

Original Article**Household Food Insecurity and Poor Oral Health in U.S. Older Adults: Findings from the Health and Retirement Study****Carlos R. Mendoza^{1*}, Li Wei¹, Ahmad K. El-Sherif¹**¹Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico.***E-mail** carlos.mendoza@outlook.com**Received:** 18 December 2022; **Revised:** 05 February 2023; **Accepted:** 19 February 2023**ABSTRACT**

Household food insecurity—meaning irregular or unreliable access to adequate food—affects roughly 1 out of every 15 Americans aged ≥ 60 . In this population, it is linked to multiple chronic illnesses, reduced use of prescribed medications that worsen conditions like diabetes or hypertension, and diminished oral health. Despite this, the connection between food insecurity and oral health has not been thoroughly explored. This study examined how food insecurity relates to several oral health measures in older adults in the United States. We conducted a prospective assessment of a subgroup of Health and Retirement Study (HRS) participants who completed food insecurity items in 2013 and a dental health–focused supplemental survey in 2018 ($N = 472$). About 20% of participants indicated experiencing food insecurity within the past year. Food insecurity showed a clear association with poorer oral health–related quality of life and increased tooth loss. Compared with food-secure counterparts, food-insecure individuals rated their oral health less favorably ($OR = 2.67$), were more likely to have lost ≥ 8 teeth ($OR = 2.35$), and had reduced odds of receiving dental services ($OR = 0.60$). Although those with food insecurity had more unmet dental needs than individuals with stable food access, they sought dental treatment less often. Improving oral health in this population may require not only expanding access to care but also addressing broader social and environmental barriers that limit their ability to obtain needed services.

Keywords: Household food insecurity, Oral health, Older adults, U.S.**How to Cite This Article:** Mendoza CR, Wei L, El-Sherif AK. Household Food Insecurity and Poor Oral Health in U.S. Older Adults: Findings from the Health and Retirement Study. *J Curr Res Oral Surg*. 2023;3:39-44. <https://doi.org/10.51847/0oYryd5VD0>**Introduction**

Household food insecurity—defined as unreliable access to enough food [1]—has been linked to reduced use of various health and dental services [2–4] and greater intake of sugary or processed foods [5]. These patterns suggest possible negative effects on oral health. Food insecurity is classified as marginal (adequate food but concern about sustained access), low (sufficient quantity with limited variety), or very low (inadequate amount, variety, and quality) [1]. The latter two categories constitute food insecurity. Roughly 5.2 million U.S. adults aged ≥ 60 (equivalent to 1 in 15) experience this issue, disproportionately affecting minority groups and socially disadvantaged

individuals [6]. This includes 25% of older adults below the poverty threshold, 20% of African Americans, and 12.5% of Hispanic adults. State-level rates range from 3% to 12.5% [6]. Affected individuals report higher burdens of physical and mental health problems, including hypertension, hyperlipidemia, diabetes [7], pre-diabetes [8], depression [9, 10], and atherosclerotic disease [11]. They also demonstrate poorer control of diabetes and LDL cholesterol [12] and may reduce medication use due to financial constraints [13].

Food insecurity has been linked to more frequent dental caries [14], particularly among children [15], partly due to higher intake of sugar-sweetened beverages, lower diet quality, and reliance on convenience stores

for groceries [5]. Adults and children lacking stable food access also visit dentists less often and experience greater unmet dental needs [2–4]. Older adults and children may encounter barriers such as cost, transportation difficulties, and unstable housing [16]. Such barriers can contribute to poorer oral health, yet only a limited number of studies have assessed how food insecurity relates to dental outcomes in older adults [3, 4, 17]. Thus, we examined associations between food insecurity and self-reported oral health indicators and dental care patterns in aging adults.

Materials and Methods

This retrospective analysis used data from the Health and Retirement Study (HRS), a national longitudinal survey of U.S. residents aged 51 and older. The HRS, funded by the National Institute on Aging (NIA U01AG009740) and administered by the University of Michigan, collects information every two years on demographics, health events, and finances. Extensive documentation on its sampling and methodology is available [18, 19]. To assess nutrition and food access, 12,418 HRS respondents were randomly chosen to join the Health Care and Nutrition Study (HCNS) in 2013 and were mailed relevant questionnaires. Of these, 8,021 participants with complete food security data constituted the base sample. In 2018, approximately 10% of HRS respondents were randomly provided with a supplemental dental health questionnaire [20]. From these sources, 472 individuals had fully linked nutrition and dental data. Because cognitive impairment and living arrangements may influence both food security and oral health, we excluded participants residing in nursing homes at baseline ($n=6$) and those ever reporting dementia ($n=14$), yielding a final analytic cohort of 452 respondents.

Measures

Food security was evaluated using the six-question short form of the U.S. Household Food Security Scale [21], a validated and widely applied tool that enables comparison with prior research. Items asked whether anyone in the household ran out of food, lacked funds for balanced meals, cut meal size, skipped meals, ate less, or went hungry because of financial limitations, along with how often these events occurred. Each “yes” response counted as 1 point, giving a total possible score of 0–6. A score ≥ 2 denoted food insecurity.

Oral health indicators were captured through multiple questions drawn from the HRS dental health supplement.

Oral health-related quality of life (OHRQoL) was determined using an approach consistent with earlier work involving this module [22]. Participants noted whether, and how often, they (a) avoided certain foods, (b) struggled to relax, (c) stayed home instead of going out, (d) felt embarrassed, or (e) experienced pain or discomfort tied to their teeth, gums, or dentures. Each item used a 5-level response scale from 1 (“never”/“not at all”) to 5 (“very often”/“a great deal”), except the self-consciousness item, which used a 3-level scale (never, sometimes, always). Scores were summed to form a composite OHRQoL score (0–23). Tooth loss, denture use, subjective oral health, and dental service use have known relevance to cognitive outcomes in older populations.

Tooth loss and denture use were self-reported. Respondents indicated whether they had lost (a) ≥ 4 teeth or (b) all teeth from the upper and lower arches separately. These answers were combined into a four-category ordinal variable ranging from 0 (fewer than four teeth lost from both arches) to 4 (complete tooth loss from both arches). A binary variable was also created to capture loss of ≥ 8 teeth. Denture use was coded dichotomously (1 = uses dentures; 0 = does not use dentures).

Self-rated oral health was obtained by asking participants to classify their mouth and teeth as poor, fair, good, very good, or excellent. For analysis, ratings were grouped as fair/poor [1] versus good/very good/excellent (0).

Dental care use was measured via a binary item asking whether the respondent had visited a dentist in the previous two years for any dental service, including denture care (1 = yes; 0 = no). Out-of-pocket dental spending over the same period was self-reported in U.S. dollars and converted to log-dollars for modeling. A set of demographic and health variables considered potential confounders was included. Demographic items consisted of age, sex, race (white, black, other), and total years of schooling. Total annual household income included wages, pensions, annuities, Social Security payments, and other income streams. Health behavior and condition variables included alcohol consumption (yes/no), smoking status (never, former, current), and a summary index of eight chronic diseases: hypertension, diabetes, cancer, lung disease, heart disease, stroke, psychiatric illness, and arthritis.

Statistical analysis

Descriptive characteristics for the full analytic sample and by food insecurity status were summarized. Spearman correlations were calculated for selected continuous or ordered measures.

Least squares regression models estimated associations for the two continuous outcomes—OHRQoL and logged out-of-pocket dental expenses. Coefficients reflected mean differences between food-insecure and food-secure respondents. Logistic regression was used to model binary endpoints: self-rated oral health, loss of ≥ 8 teeth, denture use, and dental care within two years. All analyses included adjustments for age, sex, education, race, smoking category, alcohol use, and the number of chronic illnesses.

Sensitivity analysis

To assess whether loss of participants between 2013 and 2018 (analytic sample $n=452$) influenced results, an inverse probability weighting (IPW) approach was applied. This method helps account for attrition-related selection bias. Findings were compared with the complete-case models. A probit model was first fit to the baseline cohort ($n=8,021$) to estimate the probability of remaining in the study through 2018 based on demographic and health variables used in adjusted models. Individual predicted probabilities were then used to weight respondents inversely in the regression analyses. IPW estimates are considered appropriate when attrition depends only on included covariates (i.e., missing at random).

Results and Discussion

Of the 452 participants included, 19.2% indicated experiencing food insecurity during the prior year. Relative to those with stable food access, food-insecure respondents tended to be younger, more often female, more likely to identify as non-white, more frequently smokers, had a greater burden of chronic illnesses, and reported lower annual household income (**Table 1**). Food insecurity showed a positive correlation with poorer oral health-related quality of life (Spearman's $r=0.244$, $p<0.001$) and with greater tooth loss (Spearman's $r=0.187$, $p=0.01$). Additionally, worse OHRQoL scores were associated with increased tooth loss (Spearman's $r=0.297$, $p<0.001$) (**Table 2**). Individuals reporting food insecurity had higher OHRQoL scores—reflecting poorer oral health ($\beta=1.647$, $p=0.000$)—but food insecurity did not predict out-of-pocket dental spending ($\beta=-0.306$, $p=0.415$) (**Table 3**). Compared with food-secure adults, those who were food insecure had higher odds of rating their oral health as fair/poor ($OR=2.67$, 95% CI 1.51–4.72), higher odds of losing ≥ 8 teeth ($OR=2.35$, 95% CI 1.20–4.60), and lower odds of accessing dental care in the past two years ($OR=0.60$, 95% CI 0.34–1.05) (**Table 4**). Re-analysis using inverse probability weighting to address attrition yielded findings that were similar to the primary results.

Table 1. Characteristics by food insecurity status among Health and Retirement Study participants with linked food and oral health data from 2013–2018.

	Total sample	Food insecure	Not food insecure	p-value
	N (%) or M (SD)	N (%) or M (SD)	N (%) or M (SD)	
Participant characteristics				
Age in years (mean, SD)	64.24 (9.65)	60.05 (8.52)	65.22 (9.65)	<.001
Gender: Female	263 (58.19%)	58 (66.67%)	205 (56.16%)	.074
Race/Ethnicity				
White	348 (77.33%)	47 (54.64%)	301 (82.69%)	
Black	62 (13.78%)	23 (26.74%)	39 (10.71%)	
Other	40 (8.89%)	16 (18.60%)	24 (6.59%)	
Years of formal education (mean, SD)	13.13 (3.23)	11.05 (3.71)	12.63 (2.89)	<.001
Health and lifestyle factors				
Currently consumes alcohol	254 (57.08%)	31 (36.90%)	223 (61.77%)	<.001
History of smoking (ever smoked)	239 (53.95%)	54 (64.29%)	185 (51.53%)	.035
Annual household income, \$ (mean, SD)	77,471.1 (109,569.5)	29,280.81 (25,383.16)	88,684.35 (118,280.4)	<.001
Number of chronic conditions (0–8) (mean, SD)	0.17 (0.43)	0.202 (0.53)	0.16 (0.40)	<.001

Table 2. Spearman correlations between food insecurity* and oral health measures.

	Food Insecurity	OHRQOL Score	Number of Missing Teeth	Out-of-Pocket Dental Expenses
Food Insecurity	1.00			

Oral Health-Related Quality of Life (OHRQOL) Score	0.244 (<0.001)	1.00		
Number of Missing Teeth	0.187 (<0.001)	0.297 (<0.001)	1.00	
Out-of-Pocket Dental Care Expenses	-0.0039 (0.534)	0.064 (0.311)	0.051 (0.433)	1.00

*Food insecurity score range: 0–6.

^aBinary food insecurity variable; models adjusted for age, gender, education, race, smoking, alcohol use, and number of comorbidities.

Table 3. Coefficients from adjusted least squares models for associations between food insecurity and oral health measures.

Outcome	β -Coefficient	95% Confidence Interval	p-value
Oral Health-Related Quality of Life (OHRQOL) score	1.647	0.913 – 2.381	<0.001
Out-of-pocket dental care expenses	-0.306	-1.045 – 0.433	0.415

^aBinary food insecurity variable; models adjusted for age, gender, education, race, smoking, alcohol use, and number of comorbidities.

Table 4. Logistic regression estimates linking food insecurity and oral health outcomes.

Outcome (compared to reference group)	Odds Ratio (95% CI)	p-value
Self-rated oral health: Fair/Poor (reference: Good/Very good/Excellent)	2.67 (1.51 – 4.72)	0.001
Lost 8 or more teeth (reference: Lost fewer than 8 teeth)	2.35 (1.20 – 4.60)	0.012
Currently uses dentures (reference: Does not use dentures)	1.59 (0.87 – 2.91)	0.131
Visited dentist in the past 2 years (reference: Did not visit in past 2 years)	0.60 (0.34 – 1.05)	0.076

^aBinary food insecurity variable; same covariate adjustments.

^bAmong respondents missing ≥ 10 teeth.

Older adults experiencing food insecurity over the past year exhibited poorer oral health across several indicators, including elevated OHRQoL scores, lower self-rated oral health, and increased tooth loss. The absence of a link between food insecurity and out-of-pocket dental spending may reflect trade-offs between dental treatment and other essential needs [23]. Prior research involving financially strained older men found that those who rationed medications had a reduced likelihood of reporting poor oral health [17], implying similar competing priorities. Although the Supplemental Nutrition Assistance Program (SNAP) aims to lessen food hardship, enrollment has not been linked with improved oral health outcomes [24]. Enhancing access to dental care for economically vulnerable adults and tackling barriers that deter them from seeking treatment may be necessary [16]. This study has several limitations, including a modest sample size, the absence of clinical oral examinations by dental professionals, and potential residual confounding. The small number of participants also prevented assessment of state-level differences. Annual income served as a proxy for socioeconomic status because it is reliably captured in HRS, strongly correlates with food insecurity, and reflects other SES-related factors such as education and work history. Strengths of this investigation include its prospective nature, use of a nationally representative cohort of older adults, application of inverse probability weighting to minimize bias from loss to follow-up, and adjustment for numerous relevant covariates. Some

true associations may not have been detected due to type II error.

Our results align with prior work involving older adults in the U.S. showing that financial strain is linked to poorer self-rated oral health [17]. The elevated rates of oral health problems among food-insecure older adults may stem from postponing or avoiding needed dental treatment. Another contributing factor may be higher intake of sugary drinks and processed foods—patterns frequently observed among individuals with limited food access. Those facing food insecurity often consume lower-quality diets [25] and struggle to follow recommended eating patterns for chronic disease management [26]. Diets low in fiber and in fruits and vegetables are linked to periodontal disease and inadequate diabetes control, which may worsen both oral and overall health in this population. Food insecurity has also been tied to skipping medications [27], inadequate chronic disease control [12], and depression [28, 29], all of which could indirectly worsen oral health.

Oral health problems themselves may worsen systemic health. Tooth loss has been connected to impaired chewing ability, reduced fruit and vegetable intake, and greater reliance on highly processed foods. Additionally, severe tooth loss is associated with poorer cognitive performance, increased cardiovascular risk, and higher mortality. Because food-insecure adults experience more tooth loss than those with stable food access, they may face an elevated risk for various adverse outcomes. This same

group also has higher rates of multiple chronic illnesses [30], heart disease [11], and behavioral health conditions [31], and includes larger proportions of African American, Hispanic, and other marginalized populations.

Despite having greater unmet dental needs, adults facing food insecurity remain less likely to obtain dental services. In a qualitative study, Cruz *et al.* described ongoing obstacles to receiving dental care, such as unstable housing, inadequate access to food, unreliable transportation, and limited Medicaid dental coverage for adults with low income [16]. Both qualitative and quantitative research are needed to confirm these findings and clarify the mechanisms behind these associations. Improving oral health in this population is difficult and may require addressing the broader social factors contributing to disparities alongside expanding access to dental services.

Acknowledgments:

None

Conflict of Interest:

None

Financial Support: The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Grant number: 1R21AG070449-01 from the National Institute on Aging.

Ethics Statement: The studies involving humans were approved by Institutional Review Board, University of South Carolina. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required from the participants or the participants' legal guardians/next of kin in accordance with the national legislation and institutional requirements.

References

1. Food Security in the U.S. United States Department of Agriculture, Economic Research Service. Available online at: http://www.ers.usda.gov/media/1565410/err173_summary.pdf (updated 09/03/2014) (accessed July 28, 2015)
2. Jackson DB, Testa A. Household food insecurity and children's oral health: findings from the 2016–2018 national survey of children's health. *J Public Health Dent.* (2021) 81(2):150–61. doi: 10.1111/jphd.12431
3. Lee JJ, Kim Y, Scott JM, Hill CM, Chi DL. The association of food insecurity with tooth decay and periodontitis among middle-aged and older adults in the United States and Korea. *Gerodontolgy.* (2023) 40(2):251–62. doi: 10.1111/ger.12651
4. Bahanan L, Singhal A, Zhao Y, Scott T, Kaye E. The association between food insecurity and dental caries among U.S. adults: data from the national health and nutrition examination survey. *Community Dent Oral Epidemiol.* (2021) 49 (5):464–70. doi: 10.1111/cdoe.12622
5. Hill CM, Chi DL, Mancl LA, Jones-Smith JC, Chan N, Saelens BE, et al. Sugar-sweetened beverage intake and convenience store shopping as mediators of the food insecurity-tooth decay relationship among low-income children in Washington state. *PLoS One.* (2023) 18(9):e0290287. doi: 10.1371/journal.pone.0290287
6. Dawes S, Gonzalez N, Hake M. *The State of Senior Hunger: Executive Summary.* Washington DC: Feeding America (2022). Available online at: <http://www.feedingamerica.org/research/senior-hunger-research>
7. Seligman HK, Laraia BA, Kushel MB. Food insecurity is associated with chronic disease among low-income NHANES participants. *J Nutr.* (2010) 140(2):304–10. doi: 10.3945/jn.109.112573
8. Ding M, Wilson NL, Garza KB, Zizza CA. Undiagnosed prediabetes among food insecure adults. *Am J Health Behav.* (2014) 38(2):225–33. doi: 10.5993/AJHB.38.2.8
9. Kim K, Frongillo EA. Participation in food assistance programs modifies the relation of food insecurity with weight and depression in elders. *J Nutr.* (2007) 137 (4):1005–10. doi: 10.1093/jn/137.4.1005
10. Leung CW, Epel ES, Willett WC, Rimm EB, Laraia BA. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. *J Nutr.* (2015) 145(3):622–7. doi: 10.3945/jn.114.199414
11. Mahajan S, Grandhi GR, Valero-Elizondo J, Mszar R, Khera R, Acquah I, et al. Scope and social determinants of food insecurity among adults with atherosclerotic cardiovascular disease in the United States. *J Am Heart Assoc.* (2021) 10(16): e020028. doi: 10.1161/JAHA.120.020028
12. Berkowitz SA, Baggett TP, Wexler DJ, Huskey KW, Wee CC. Food insecurity and metabolic control among U.S. adults with diabetes. *Diabetes Care.* (2013) 36 (10):3093–9. doi: 10.2337/dc13-0570

13. Berkowitz SA, Seligman HK, Choudhry NK. Treat or eat: food insecurity, cost- related medication underuse, and unmet needs. *Am J Med.* (2014) 127(4):303–10. doi: 10.1016/j.amjmed.2014.01.002
14. Drumond VZ, de Arruda JAA, Bernabé E, Mesquita RA, Abreu LG. Burden of dental caries in individuals experiencing food insecurity: a systematic review and meta-analysis. *Nutr Rev.* (2023) 81(12):1525–55. doi: 10.1093/nutrit/nuad031
15. Hill B. Evaluating the association between food insecurity and dental caries in US children 1–19 years: results from the national health and nutrition examination survey (NHANES) 2013–2014. *J Public Health Dent.* (2020) 80(1):14–7. doi: 10.1111/jphd.12345
16. Cruz S, Kerr D, Patiño Nguyen D, Carlyle A, Chi DL. Qualitative evaluation of the pre-implementation phase of a rural dental clinic co-located within a health center in the Pacific Northwest of the United States. *Community Dent Oral Epidemiol.* (2023) 51(2):256–64. doi: 10.1111/cdoe.12734
17. Chi DL, Tucker-Seeley R. Gender-stratified models to examine the relationship between financial hardship and self-reported oral health for older US men and women. *Am J Public Health.* (2013) 103(8):1507–15. doi: 10.2105/AJPH.2012.301145
18. Heeringa SG, Connor J. *Technical Description of the Health and Retirement Study Sample Design.* Ann Arbor, MI: Research IfS (1995).
19. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. Cohort profile: the health and retirement study (HRS). *Int J Epidemiol.* (2014) 43 (2):576–85. doi: 10.1093/ije/dyu067
20. Weinrib J. *Module 3: Dental Health and Dental Health Services, Health and Retirement Study.* Ann Arbor, MI: Health and Retirement Study HRS (2018).
21. Blumberg SJ, Bialostosky K, Hamilton WL, Briefel RR. The effectiveness of a short form of the household food security scale. *Am J Public Health.* (1999) 89 (8):1231–4. doi: 10.2105/AJPH.89.8.1231
22. Joshi P, Kaufman LB, Cabral H. Oral conditions, oral health related quality of life and cognitive function: preliminary results from the health and retirement study. *Adv Geriatr Med Res.* (2021) 3(4):e210020. doi: 10.20900/agmr20210020
23. Muirhead V, Quiñonez C, Figueiredo R, Locker D. Oral health disparities and food insecurity in working poor Canadians. *Community Dent Oral Epidemiol.* (2009) 37(4):294–304. doi: 10.1111/j.1600-0528.2009.00479.x
24. Bahanan L, Singhal A, Zhao Y, Scott T, Kaye E. The association between the supplemental nutrition assistance programme participation and dental caries among U.S. adults. *Int J Dent Hyg.* (2021) 22(1):251–7. doi: 10.1111/idh.12562
25. Leung CW, Epel ES, Ritchie LD, Crawford PB, Laraia BA. Food insecurity is inversely associated with diet quality of lower-income adults. *J Acad Nutr Diet.* (2014) 114(12):1943–1953.e2. doi: 10.1016/j.jand.2014.06.353
26. Knight CK, Probst JC, Liese AD, Sercye E, Jones SJ. Household food insecurity and medication “scrimping” among US adults with diabetes. *Prev Med.* (2016) 83:41–5. doi: 10.1016/j.ypmed.2015.11.031
27. Bhargava V, Lee JS, Jain R, Johnson MA, Brown A. Food insecurity is negatively associated with home health and out-of-pocket expenditures in older adults. *J Nutr.* (2012) 142(10):1888–95. doi: 10.3945/jn.112.163220
28. Lai S, Huang D, Bardhan I, Park M. Associations between food insecurity and depression among diverse Asian Americans. *Asian Pac Isl Nurs J.* (2021) 5 (4):188–98. doi: 10.31372/20200504.1114
29. Silverman J, Krieger J, Kiefer M, Hebert P, Robinson J, Nelson K. The relationship between food insecurity and depression, diabetes distress and medication adherence among low-income patients with poorly-controlled diabetes. *J Gen Intern Med.* (2015) 30:1476–80. doi: 10.1007/s11606-015-3351-1
30. Jih J, Stijacic-Cenzer I, Seligman HK, Boscardin WJ, Nguyen TT, Ritchie CS. Chronic disease burden predicts food insecurity among older adults. *Public Health Nutr.* (2018) 21(9):1737–42. doi: 10.1017/S1368980017004062
31. Jih J, Nguyen TT, Jin C, Seligman H, Boscardin WJ, Ritchie CS. Food insecurity is associated with behavioral health diagnosis among older primary care patients with multiple chronic conditions. *J Gen Intern Med.* (2020) 35(12):3726–9. doi: 10.1007/s11606-019-05569-