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ABSTRACT

This work sought to construct and assess an artificial intelligence workflow that merges object-detection and
image-classification models to support early recognition and distinction of oral lesions. A retrospective cross-
sectional design was applied, using clinical photographs of oral potentially malignant disorders and oral
squamous cell carcinoma. The primary dataset consisted of 773 images from the Faculdade de Odontologia de
Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), and an independent validation set included
132 images from the Federal University of Paraiba (UFPB). All images were captured before biopsy, each
paired with histopathological confirmation. For lesion localization, ten YOLOvV11 variants employing different
augmentation schemes were trained for 200 epochs with pretrained COCO weights. For classification, three
MobileNetV2 networks were trained on crops generated according to expert bounding boxes, each adopting
distinct learning rate and augmentation configurations. After identifying the top-performing detection—
classification pair, both components were linked in a two-stage pipeline in which the detector-generated crops
were forwarded into the classifier. The optimal YOLOv11 model achieved an mAP50 of 0.820, precision of
0.897, recall of 0.744, and an Fl1-score of 0.813. The strongest MobileNetV2 model reached an accuracy of
0.846, precision of 0.871, recall of 0.846, F1-score of 0.844, and an AUC-ROC of 0.852. On the external set,
the same classifier obtained an accuracy of 0.850, precision of 0.866, recall of 0.850, an F1-score of 0.851, and
an AUC-ROC of 0.935. The integrated two-step framework, tested on the baseline dataset, achieved an
accuracy of 0.784, precision of 0.793, recall of 0.784, Fl-score of 0.784, and an AUC-ROC of 0.811. When
applied to the independent dataset, it produced an accuracy of 0.863, a precision of 0.879, a recall of 0.863, F1-
score of 0.866, and an AUC-ROC of 0.934. Visual review of the YOLO outputs showed consistent lesion
localization across varied oral images, though 17.4% were not detected. The t-SNE map revealed partial
clustering of OPMD and OSCC embeddings, suggesting the model captured relevant discriminative signals
despite some overlap. This proof-of-concept investigation indicates that a coupled detection—classification Al
framework can feasibly support early screening of oral lesions. Nonetheless, caution is necessary when
interpreting two-stage results, since images not detected by YOLO do not advance to classification, potentially
influencing the final metrics.
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Introduction success, prognosis, and slowing malignant progression
[1]. Despite this, early-stage OPMDs are often
overlooked because they commonly appear as
asymptomatic, flat lesions that do not alert patients.

Timely recognition of oral malignancies and their
precursor lesions is crucial for lowering the frequency
of late-stage diagnoses, thereby improving treatment
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These early-stage OPMDs may resemble subtle or
“incipient” oral squamous cell carcinomas, which
manifest as plaques in nearly 80% of cases [2]. Limited
public and practitioner awareness of early signs
contributes to delayed consultation, and restricted
access to specialists in remote areas further reduces
timely evaluation.

At present, conventional clinical oral examination
remains the most widely applied method for early
detection [3], yet it strongly depends on the examiner’s
judgment. Tarakji et al. [4] note that OPMD diagnosis
requires competent  clinical evaluation and
histopathology, with specialists typically
outperforming general practitioners. Addressing this
gap requires ongoing training and supportive
diagnostic tools. Many adjunctive tests have been
proposed to enhance early recognition and risk
assessment. Among these, Al-based approaches using
clinical images provide a promising means of
streamlining diagnostic processes by using computer-
vision tools to distinguish OPMD from malignant
lesions [5, 6], speed referrals [7], support biopsy
decisions, and mitigate limitations of traditional
examinations that rely on clinical indicators like
erythema and ulceration [8, 9], which can also be
present in OPMDs. Consequently, CNN-based systems
trained on white-light imagery commonly explore two
essential  tasks: lesion detection and image
categorization [10]. Applying both elements is key to
building reliable diagnostic systems.

Object detection is a computer-vision technique that
identifies where objects appear in an image—typically
through bounding boxes—and assigns each object to a
class [11]. These methods are valuable in clinical
contexts because they highlight suspicious locations
within oral images, reducing the chance of missing
subtle abnormalities. They also allow integration into
workflows that first locate a lesion and then classify it.
Prominent models used for oral-disease tasks include
YOLO, Faster R-CNN, RetinaNet, and CenterNet2.
They are particularly useful for recognizing smooth
leukoplakias that might be missed in routine
inspection. Still, several limitations persist, including
scarce datasets, the absence of external testing, and
difficulty identifying very small lesions [12-16].
Classification models, on the other hand, generate
diagnostic outcomes for whole images or for selected
regions without the need to outline the full margins of
a lesion. By extracting visual cues from clinical
photographs, these systems are capable of
differentiating harmless findings from potentially
malignant or overtly malignant conditions, helping
prioritize referrals and supporting decision-making in

settings with limited clinical expertise. Within the
domain of oral pathology, CNN-based classification
strategies have gained momentum for automating
diagnostic triage and flagging cases that warrant
specialist review [5, 17-23]. Nevertheless, these
approaches still encounter obstacles related to the
diversity of available datasets, the clarity of model
outputs, and their practical deployment in routine care.
The purpose of this work is to design both detection
and classification models that assist in recognizing
OPMD and OSCC at early stages, and to merge these
components into a two-stage framework. The detection
module narrows the analysis to the relevant areas of the
image, while the classification module interprets the
localized regions from a diagnostic standpoint. This
ordered workflow not only improves the reliability of
the final prediction but also mirrors the clinical
sequence in which practitioners first identify a lesion
and then assess its malignant potential. As a result, both
interpretability and accuracy of the proposed solution
are enhanced.

Materials and Methods

Dataset
This retrospective cross-sectional project relied on a

real-world collection of 773 clinical photographs
obtained from individuals presenting with oral lesions
at the Faculdade de Odontologia de Piracicaba,
Universidade Estadual de Campinas (Piracicaba, Sdo
Paulo, Brazil) between 2000 and 2025. Images were
separated into 380 OPMD and 393 OSCC cases. For
external assessment, a supplementary group from the
Federal University of Paraiba (UFPB) in Jodo Pessoa,
Paraiba, Brazil, contributed 53 OPMD and 79 OSCC
images. Classification of both categories followed the
criteria defined by the World Health Organization
(WHO Classification of Tumours Editorial Board,
2022). The OPMD set included conventional
leukoplakia—with ~or  without oral epithelial
dysplasia—and proliferative verrucous leukoplakia,
while the OSCC group incorporated multiple clinical
and histological variants (conventional, verrucous, and
incipient) to broaden the range of presentations.

To maintain coherent diagnostic labeling and image
quality, several exclusion rules were applied.
Photographs with inadequate resolution were removed,
as were samples linked to non-representative biopsies,
defined as: (1) specimens diagnosed as OED despite
clinical signs suggestive of OSCC, or (2) biopsies too
small or technically compromised to establish a
reliable diagnosis. If a patient underwent more than one
biopsy due to notable clinical evolution, only images
taken before each procedure were used, with at least a

99



Nguyen et al., YOLOv11-MobileNetV2 Two-Stage Al Framework for Lesion Localization and Differentiation of Oral
Cancer and Precancerous Lesions

three-month interval required between biopsies. All
photographs were captured before any biopsy and were
paired with histopathological confirmation.

The dataset was divided non-randomly into training,
validation, and test sets. Images from the same patient

were kept together in the training subset to eliminate
leakage, and the proportional distribution of the two
major classes was preserved in each partition (Table

1.

Table 1. Datasets.

Total Baseline External

Class T(r; (;f:/“)lg V:zlll(()l‘z;tlon ;[‘Oe os/t Dataset (FOP- Validation Dataset 0,[‘,1 eralll
o ) (10%) UNICAMP) (UFPB) ota
OPMD (Oral
Potentially Malignant 312 34 34 380 53 433
Disorders)
OSCC (Oral
Squamous Cell 316 39 38 393 79 472
Carcinoma)
Total 628 73 72 773 132 905

OPMD, oral potentially malignant disorder; OSCC,
oral squamous cell carcinoma.

Bounding-box annotation was carried out by A.L.D.A.,
with C.S.S. consulted to achieve agreement. Labeling
was performed using Aperio ImageScope (Leica
Biosystems) with a Huion Inspiroy H1060P tablet, and
annotators were kept blinded to the diagnostic
category. Lesions were enclosed within rectangular
regions.

The project followed the Checklist for Artificial
Intelligence in Medical Imaging (CLAIM) [24] and the
MAIC-10 criteria [25]. Ethical approval was provided
by the Piracicaba Dental School Ethical Committee
(Registration 42235421.9.0000.5418) and the Federal
University of Paraiba Ethical Committee (Registration
72314323.0.0000.5188). Material Transfer
Agreements were included to enable the exchange of
image data between institutions.

Workstation
All processing took place in Google Colab within a

uniform virtual environment. The system utilized an
Intel(R) Xeon(R) CPU running at 2.00 GHz (2 threads,
1 physical core) with 39 MB L3 cache, and an NVIDIA
Tesla T4 GPU providing 15,360 MiB of VRAM
(CUDA 12.4, Driver 550.54.15).

Object detection task
YOLO (You Only Look Once) [26] is a high-speed,

convolutional-network—driven framework for
detecting objects within images. Instead of relying on
multi-stage region proposals or sequential processing,
YOLO reframes detection as a unified regression task
in which the entire image is analyzed simultaneously.
The image is partitioned into a grid, and each grid
segment predicts bounding boxes, confidence values,
and class likelihoods. This design allows the method to

operate at real-time speeds while maintaining
competitive accuracy. Its end-to-end training scheme
also simplifies optimization, making it widely adopted
in fields ranging from surveillance and autonomous
navigation to medical imaging.

YOLOvI11 [27], the newest member of the YOLO
family, incorporates several architectural upgrades
intended to boost performance in diverse computer-
vision scenarios. Among the most notable additions are
the C3k2 block (a Cross-Stage-Partial variant using
kernel size 2), the SPPF (Spatial Pyramid Pooling—
Fast), and the C2PSA module (a parallel spatial-
attention convolutional block). Collectively, these
components enhance representational strength and
computational efficiency.

For this study, ten detector models were constructed
across four YOLOvI1 variants: YOLOvlIn (2.6M
parameters), YOLOvlls (9.4M), YOLOvllm
(20.1M), and YOLOv111 (25.3M). Each version was
paired with specific augmentation schemes to examine
performance differences. All detectors were initialized
using pretrained COCO weights [28] and trained for
200 epochs with images standardized to 640 x 640
pixels. The augmentation operations included hue
shifts (£0.015), saturation changes (+0.7), translation
(x10% of image dimensions), and scale adjustments
(£50%). Horizontal flips were applied at a 0.5
probability. Additional variations incorporated mosaic
augmentation, wherein one to four images are
randomly fused during training.

Evaluation of the detection models used mean Average
Precision at 50% IoU (mAP50) as the main
performance metric, with emphasis on accurate lesion
localization. A single class (“lesion”—combining
OPMD and OSCC) was used, as preliminary
experiments indicated that while the model localized
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regions well, discrimination between the two lesion
types was very poor; when treated as separate classes,
mAP50 fell to roughly 22%. Because the task
effectively becomes single-class detection, AUROC
was not computed. Precision, Recall, and F1-Score
were also obtained using the Ultralytics built-in
evaluation tools.

While mAP50 was used for consistency with standard
detection literature, it should be recognized that for a
single-class task, mAP50 is identical to AP at IoU =
0.5. Since AP corresponds to the area under the
Precision—Recall curve (AUC-PR), AP and AUC-PR
are mathematically equivalent. We therefore report AP
only, following established norms in the field.

Classification task
Three MobileNetV2-based models [29, 30] were

trained, each using different learning rates and
augmentation configurations. Rather than full images,
the classifiers received crops derived from the expert-
annotated bounding boxes. Learning rate values were
selected through structured hyperparameter searches,
guided by loss-curve behavior observed in pilot trials.
All classifiers were initialized with ImageNet
pretrained weights [31, 32] and trained for 200 epochs,
with image inputs resized to 224 X 224 pixels.
Augmentations included adjustments to brightness,
contrast, and saturation (+0.2), hue changes (+0.1), and
translations of up to £10% of the image dimension.
Random flips—both horizontal and vertical—were
applied in multiple variants. Because the two classes
were perfectly balanced, no class-imbalance
corrections were required.

Accuracy, precision, recall, F1-score, and AUC-ROC
were computed using the scikit-learn toolkit [33]. After
determining the optimal pairing of detector and
classifier, the models were combined into a sequential
framework in which the detector’s cropped outputs
were forwarded directly to the classification stage.

Results and Discussion

Object detection

Across  the experiments, the
YOLOvVI11 configurations displayed a range of
performance, with mAP50 values spanning 0.718-
0.820 depending on the augmentation scheme. The
most effective setup incorporated Albumentations with
mild blur, grayscale conversion, CLAHE [34], and
restrained geometric modifications—specifically an
80° rotation and a very small 0.001 perspective
adjustment. This combination reached the top mAP50
(0.820), precision (0.897), and Fl-score (0.813).
Although its recall (0.744) was marginally below that
of a few alternative variants, the notable improvement
in precision and the resulting balanced F1-metric
suggest an advantageous compromise (Table 2).
Qualitative review of the detections demonstrated
stable lesion localization across various oral images,
shown through bounding boxes and confidence
estimates.  Overall, tailored  augmentation—
particularly rotation and subtle perspective changes—
enhanced detection outcomes on the baseline-derived
test set (Figure 1).

lesion-detection

Table 2. summarizes YOLOv11 one-class detection metrics using the baseline dataset. Definitions:

Model Albumentations Close_mosaic Degrees Perspective Flipud mAPS0 Precision Recall Slc?(:l-'e
YOLOvl1ln True 0 0.0 0.0 0.0 0.767 0.811 0.718  0.761
YOLOvlIn True 0 80.0 0.0 0.5 0.784 0.841 0.748  0.792
YOLOvlIn True 0 0.0 0.0 0.5 0.743 0.763 0.782  0.772
YOLOvI1n True 50 0.0 0.0 0.5 0.776 0.831 0.758  0.792
YOLOvlIn True 100 0.0 0.0 0.5 0.765 0.775 0.718 0.745
YOLOvlls True 0 80.0 0.0 0.5 0.766 0.724 0.740 0.732
YOLOv1Im True 0 80.0 0.0 0.5 0.752 0.720 0.692  0.705
YOLOvI111 True 0 80.0 0.0 0.5 0.718 0.713 0.679  0.695
YOLOvlIn False 0 80.0 0.0 0.5 0.788 0.766 0.754  0.760
YOLOvll1n True 0 80.0 0.001 0.5 0.820 0.897 0.744  0.813

Albumentations indicates the augmentation library;
Close_mosaic describes a multi-image composite
technique; Degrees corresponds to the rotation range;

flipud denotes vertical flips; mAP is mean average
precision; Perspective refers to the degree of geometric
distortion. Bolded entries mark the best scores.
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Figure 1. presents YOLO-based lesion detection examples, with orange boxes indicating ground truth and

blue boxes showing predictions with associated confidence values.

Classification

For lesion-classification tasks, MobileNetV2 models
benefited most from applying both horizontal and
vertical flipping. The configuration trained with a
learning rate of 0.0001 alongside these dual flips
produced the strongest results: accuracy 0.846 (95%
CI: 0.756-0.923), precision 0.871 (95% CI: 0.817-
0.933), recall 0.846 (95% CI: 0.756-0.923), F1-score
0.844 (95% CI: 0.756-0.923), and an AUC-ROC of
0.852 (95% CI: 0.759-0.941), which was the second-
highest. Although not the top AUC-ROC, the gap was
minimal (0.004), indicating negligible loss in

discriminatory capability. Excluding vertical flips led
to uniformly lower results, showing that combining
both orientations improved generalization on the
baseline test set. Lowering the learning rate to 0.00001
produced slightly reduced scores, implying that a
moderately small learning rate, together with richer
augmentation is preferable (Table 3).

After choosing this optimal MobileNetV2 setup
(Model 2); (Table 3), external validation yielded
accuracy 0.850 (0.798-0.902), precision 0.866 (0.822—
0.912), recall 0.850 (0.798-0.902), Fl-score 0.851
(0.799-0.902), and AUC-ROC 0.935 (0.900-0.968).

Table 3. reports MobileNetV2 performance on expert-guided crops using the baseline dataset, with values
shown as mean (95% CI) derived via 1,000 bootstrap runs. LR = learning rate. Best metrics are bold.

Model Learning  Horizontal  Vertical Accuracy Precision Recall F1-Score ARI(J)%
1 i o, o, o o,

Rate Flip Flip 95% CI) 95% CI) 5% CI) (95% CI) (95% CI)
0.743 0.742 0.823

1 0.0001 True False 0'7_43 gi'66)54 0'7_58 §2'26)56 (0.654 - (0.647 — (0.725 —
' ' 0.846) 0.846) 0.913)
0.846 0.844 0.852

2 0.0001 True True 0'%‘3 ;(337)56 O'?& 5238)17 (0.756 — (0.756 — (0.759 —
' ' 0.923) 0.923) 0.941)
0.820 0.818 0.856

3 0.00001 True True O.EiZ(()) ég'77)31 0'%‘3 ;?)'97)72 (0.731 - (0.727 - (0.755 —
' ’ 0.897) 0.897) 0.928)

For the integrated two-stage method, we adopted the
best MobileNetV2 classifier (Model 2), (Table 3) and
applied it to cropped images obtained from the highest-
performing YOLOv11n model (Table 2), following an

approach comparable to that described by Fu et al. [35].
Performance of this combined pipeline was also
computed for the external validation set (Table 4).
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Table 4. presents the resulting metrics, expressed as mean (95% CI) using 1,000 bootstrap samples. Bold
values highlight the strongest results.

Dataset Accuracy (95%  Precision (95% Recall (95% F1-Score AUC-ROC
CI) CI) CI) (95% CI) (95% CI)
Baseline dataset (FOP- 0.784 (0.696 — 0.793 (0.712 — 0.784 (0.696 —  0.784 (0.696 —  0.811 (0.712 —
UNICAMP) 0.863) 0.872) 0.863) 0.863) 0.889)
External validation 0.863 (0.806 — 0.879 (0.831 — 0.863 (0.806 —  0.866 (0.807 —  0.934 (0.883 —
dataset (UFPB) 0.914) 0.928) 0.914) 0.916) 0.975)

aTest set corresponds to the baseline dataset (FOP-UNICAMP).

Visual examination plays a crucial role because relying  Reviewing the model’s actual predictions offers an
only on YOLO’s numerical metrics may not fully additional layer of understanding that improves
capture how well the detector behaves in practice. interpretability (Figure 2).

lesion 0.70

i

ground truth

Figure 2. Qualitative assessment of YOLO’s output. (a) Illustration of a highly accurate prediction, where the
model’s bounding box almost perfectly aligns with the reference annotation (ground truth shown in orange).
(b) In certain instances, experts annotated lesions with multiple bounding boxes to represent their full extent.
YOLO, however, tends to generate a single box, which may not include all annotated regions. This indicates
that the detector may struggle with large or irregular lesions that cannot be captured using only one bounding
region. As a result, only the area enclosed by the model-generated blue box is passed on to the MobileNetV2

classifier, which in some situations can deprive the classifier of essential contextual information, leading to
mislabeling. (c) Example of a case where the model failed to detect any lesion. Within the external validation
set of 132 images, 23 (17.4%) produced no detection box, and such images were consequently excluded from
the classification step. (d) Illustration of YOLO predicting one extensive bounding box that covers the
affected region containing multiple expert annotations. Although the detection is clinically accurate, the mAP
metric is penalized because the model outputs fewer boxes than the ground truth, demonstrating how visual
correctness may diverge from quantitative scoring.

t-SNE plot external validation images, mapping them into two
We additionally generated a t-SNE projection of the dimensions to qualitatively explore the learned
feature embeddings derived from the two-stage representations. As shown in Figure 3, the
workflow  (YOLOvlln+MobileNetV2) on the visualization reveals partial differentiation between
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OPMD and OSCC images. Distinct clusters dominated
by one class emerge, suggesting that the model
successfully recognizes meaningful, -class-related
information. Nonetheless, a considerable overlap
region—particularly in the central and lower areas of
the plot—shows points from both categories
interspersed. This pattern indicates that while
MobileNetV2 captures discriminative features, the two
classes still share substantial visual similarity in many
samples. The overlapping clusters likely represent

diagnostically ambiguous lesions rather than any
substantial flaw in the model, reflecting the reality that
borderline cases often present nearly identical visual
patterns. Consequently, classification mistakes tend to
occur within this mixed region, highlighting the natural
limit imposed by the dataset’s complexity. This t-SNE
distribution, therefore, helps explain the model’s
performance constraints: some errors are rooted in the
inherent challenge of the problem rather than
inadequacies in feature learning.

t-SNE of MobileNetV2 Embeddings
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Figure 3. t-SNE mapping of embeddings from the external validation set. Each dot corresponds to an image’s
feature representation in two dimensions, with nearby points indicating similar learned features. Color coding
reflects the true class labels: red indicates oral potentially malignant disorders (OPMD), and blue corresponds

to oral squamous cell carcinoma (OSCC). The overlap of blue and red points in the central and lower zones
illustrates OSCC samples that share close visual resemblance to OPMDs.

The goal of this investigation was to construct
detection and classification models to support oral
cancer screening within a mobile application
standardized  photographic
acquisition. The findings align with previous studies
showing that initializing models with COCO pre-
trained weights can speed up learning and enhance
detection outcomes [12-15]. Consistent with the
conclusions of Welikala et al. [16], our results also
indicate that ImageNet-based initialization may offer
improved transfer effectiveness for clinical imaging
tasks, likely due to broader variability and richer low-
level features. Even with the use of widely adopted
frameworks such as YOLO and Faster R-CNN,

environment  using

together with accepted strategies like extensive
augmentation and consensus labeling, the performance
remains influenced by annotation subjectivity and the
difficulty of identifying small or subtle lesions,
particularly those associated with OPMDs. However,
prior reports showing that Al models can perform on
par with or even outperform clinicians suggest that
such systems hold considerable promise in supporting
early OSCC detection—especially when embedded in
mobile, user-friendly tools designed to complement
everyday clinical practice.

Our two-stage framework parallels the strategy
described by Fu et al. [35], who employed backbone
architectures for both detection and classification,
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using bounding boxes to localize lesions in clinical
photographs and then passing the cropped areas to the
classifier. Direct comparison with their results is not
feasible because detection outcomes were not provided
in their work. Nevertheless, the performance of our
combined pipeline on the external validation dataset—
AUC=0.934 (95% CI: 0.883-0.975)—closely
matches the value reported by Fu et al. [AUC =0.935
(95% CI: 0.910-0.957)], indicating that our method
reaches a similar discriminative capability despite
variations in datasets and preprocessing. The
reproducibility of results in external validation
strengthens the likelihood that our system can
generalize to independent cohorts. Still, it is crucial to
acknowledge that YOLO detections may introduce
constraints; for example, bounding boxes may only
partly capture the lesion, or the lesion may be missed
entirely. Such limitations should be considered when
interpreting the final performance of the two-step
pipeline, as they may influence the -classifier’s
evaluation.

Consistent with most existing publications [12—15],
our work also employed COCO-derived weights for
initialization in the detection stage, accelerating
training and improving performance due to the broad
prior knowledge embedded in that dataset. Only one
earlier report [16] relied on ImageNet as the pre-
training source, and their enhanced recall and F1-score
indicate that ImageNet may offer stronger feature
transfer for clinical imagery, potentially due to its
wider visual diversity and richer low-level descriptors.
Even so, pre-training cannot be assumed to guarantee
superiority, since models, datasets, and target
categories vary considerably across studies, and
additional factors—including data augmentation
protocols, balancing strategies, and IoU thresholds—
can substantially influence outcomes.

It is well recognized that lesion labeling (segmentation
or bounding-box definition) carries intrinsic
subjectivity from clinical interpretation, which may
propagate bias into the models when annotations come
from a single reader. Many studies define ground truth
using the region of maximal overlap among annotators
[13-15], while others rely on aggregated labels from
multiple experts [16]. In our methodology, two
annotators reached agreement on each lesion to create
a unified bounding box (except in cases where lesion
size or configuration required more than one), thereby
simplifying processing while maintaining annotation
consistency.

A comprehensive review of the literature revealed five
relevant investigations [12-16] that applied object
detection architectures. These included various YOLO

versions [12-14], Faster R-CNN [13-16], RetinaNet
[13], and CenterNet2 [14]. YOLO emerged as the most
common approach, used in all studies except [15, 16].
Its popularity likely reflects the model’s direct
bounding-box regression mechanism, compact
architecture, and straightforward deployment—
attributes that are advantageous for real-time or mobile
environments [26]. However, an important drawback is
the reduced sensitivity of some YOLO variants when
dealing with very small targets [36].

Regarding sampling design, our baseline dataset was
divided using an 80:10:10 scheme, and a distinct test
subset derived from the same dataset was used to
evaluate generalization. Additionally, we employed an
external validation dataset to strengthen the assessment
of model robustness, following guidance from Cerda-
Alberich et al. and Tejani et al. [24, 25]. The 80:10:10
division aligns with the strategy reported by Tanriver
et al. [12], although it is not the prevailing approach in
the object detection literature. When data volume is
limited, five-fold cross-validation remains a strong
option [13—15], and supplemental techniques such as
bootstrapping, ensembling, label smoothing, stratified
or nested cross-validation, and early stopping are
recommended to mitigate heterogeneity, labeling
inaccuracies, and overfitting, thus promoting more
stable and transferable models [37].

For evaluating detection performance, commonly
recommended metrics include recall
(sensitivity), F1-score, Intersection over Union (IoU),
and mean Average Precision (mAP). Among these,
mAP provides the broadest assessment because it
examines performance across confidence thresholds,
across classes, and across varying object complexities
[28]. Despite its importance, only the present work and
one earlier study [12] reported mAP. IoU is also
noteworthy as a stringent measure—quantifying how
well predictions overlap with their corresponding
annotations—and often penalizes predictions that are
directionally correct but not perfectly aligned,
particularly in the presence of small, complex, or
irregular lesions.

Warin et al. [14] evaluated how accurately Al systems
detect OSCC compared with oral and maxillofacial
surgeons. Interestingly, even their weakest-performing
algorithm—CenterNet2—surpassed the surgeons in
OSCC detection. In contrast, clinicians demonstrated
superior sensitivity for identifying OPMD. This likely
reflects the heterogeneous and often subtle nature of
OPMDs, whose visual characteristics can resemble
other oral conditions and pose challenges even for
seasoned specialists. Prior research also indicates that
fast object-detection architectures may struggle to

precision,
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capture the finer details required to reliably detect
OPMDs.

One advantage of the present study is that the baseline
dataset spans a 25-year interval (2000-2025),
introducing natural variation in imaging conditions
(e.g., device type, illumination), which may contribute
to more robust model performance when annotations
are consistent. The dataset also maintains an
approximate class balance, reducing the need for
extensive reweighting or oversampling [38].
Nevertheless, we employed data augmentation
procedures to reinforce the training process, an
essential step given the relatively modest dataset size.
Importantly, the dataset includes early and advanced
OSCC as well as multiple OPMD subcategories,
supporting clinical realism. Some subclasses contain
few samples, which reflects the actual distribution of
lesion types seen in practice.

As with most medical deep learning studies, our work
is constrained by the limited number of annotated
images, since DL models generally benefit from very
large training sets. To mitigate this, we incorporated
augmentation strategies and used a well-defined
training/validation split to monitor loss progression and
apply early stopping when appropriate. A separate test
partition was then used to estimate generalization. In
addition, an external dataset—captured with different
equipment, acquisition conditions, and geographic
origins—was used for validation. The strong
performance on this independent dataset suggests that
overfitting was unlikely. However, a subset of images
(17.4%) yielded no detection box and therefore could
not proceed to the classification stage. This restriction
may introduce bias by decreasing the number of
evaluable samples and possibly overlooking specific
lesion forms. Another limitation is that augmentation
parameters were adopted directly from the YOLO
defaults rather than optimized for this dataset; refining
these settings through ablation studies is planned for
future investigation. Although we did not implement
formal explainability tools, the YOLO detection stage
naturally provides some interpretability via object
localization. Because the MobileNetV2 classifier
receives only cropped regions, methods such as Grad-
CAM would offer limited additional insight.
Nonetheless, explainability remains essential for
clinical trust, and we intend to explore approaches like
Grad-CAM [39, 40] and SHAP [41] moving forward.
Currently, no technology has
demonstrated superior sensitivity or specificity for oral
cancer screening compared with standard intraoral
examination [42]. Screening, by definition, involves
applying a test to individuals without symptoms to

conclusively

identify disease at an early, more treatable stage [3].
Therefore, Al tools that classify already-noticed
lesions do not function as true screening modalities;
they instead operate as decision-support systems that
assist clinicians in evaluating findings detected during
the clinical exam. Evidence is also insufficient to show
that such systems modify disease progression or reduce
mortality. Even with early diagnosis—whether Al-
assisted or not—Ileukoplakia frequently reappears
despite interventions such as surgery or CO: laser
therapy [43]. Furthermore, whether accurately
predicting malignant transformation risk would
meaningfully alter outcomes remains uncertain.

Conclusion

This work presents an initial, proof-of-concept two-
stage pipeline for detecting oral cancer and
distinguishing between OPMD and OSCC. Future
research will involve a prospective study in which
clinicians use a mobile application to aid diagnosis,
providing a real-time, accessible, low-cost, and non-
invasive support tool for oral healthcare.
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