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ABSTRACT 

This work sought to construct and assess an artificial intelligence workflow that merges object-detection and 

image-classification models to support early recognition and distinction of oral lesions. A retrospective cross-

sectional design was applied, using clinical photographs of oral potentially malignant disorders and oral 

squamous cell carcinoma. The primary dataset consisted of 773 images from the Faculdade de Odontologia de 

Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP), and an independent validation set included 

132 images from the Federal University of Paraíba (UFPB). All images were captured before biopsy, each 

paired with histopathological confirmation. For lesion localization, ten YOLOv11 variants employing different 

augmentation schemes were trained for 200 epochs with pretrained COCO weights. For classification, three 

MobileNetV2 networks were trained on crops generated according to expert bounding boxes, each adopting 

distinct learning rate and augmentation configurations. After identifying the top-performing detection–

classification pair, both components were linked in a two-stage pipeline in which the detector-generated crops 

were forwarded into the classifier. The optimal YOLOv11 model achieved an mAP50 of 0.820, precision of 

0.897, recall of 0.744, and an F1-score of 0.813. The strongest MobileNetV2 model reached an accuracy of 

0.846, precision of 0.871, recall of 0.846, F1-score of 0.844, and an AUC-ROC of 0.852. On the external set, 

the same classifier obtained an accuracy of 0.850, precision of 0.866, recall of 0.850, an F1-score of 0.851, and 

an AUC-ROC of 0.935. The integrated two-step framework, tested on the baseline dataset, achieved an 

accuracy of 0.784, precision of 0.793, recall of 0.784, F1-score of 0.784, and an AUC-ROC of 0.811. When 

applied to the independent dataset, it produced an accuracy of 0.863, a precision of 0.879, a recall of 0.863, F1-

score of 0.866, and an AUC-ROC of 0.934. Visual review of the YOLO outputs showed consistent lesion 

localization across varied oral images, though 17.4% were not detected. The t-SNE map revealed partial 

clustering of OPMD and OSCC embeddings, suggesting the model captured relevant discriminative signals 

despite some overlap. This proof-of-concept investigation indicates that a coupled detection–classification AI 

framework can feasibly support early screening of oral lesions. Nonetheless, caution is necessary when 

interpreting two-stage results, since images not detected by YOLO do not advance to classification, potentially 

influencing the final metrics. 
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Introduction 
 

Timely recognition of oral malignancies and their 

precursor lesions is crucial for lowering the frequency 

of late-stage diagnoses, thereby improving treatment 

success, prognosis, and slowing malignant progression 

[1]. Despite this, early-stage OPMDs are often 

overlooked because they commonly appear as 

asymptomatic, flat lesions that do not alert patients. 
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These early-stage OPMDs may resemble subtle or 

“incipient” oral squamous cell carcinomas, which 

manifest as plaques in nearly 80% of cases [2]. Limited 

public and practitioner awareness of early signs 

contributes to delayed consultation, and restricted 

access to specialists in remote areas further reduces 

timely evaluation. 

At present, conventional clinical oral examination 

remains the most widely applied method for early 

detection [3], yet it strongly depends on the examiner’s 

judgment. Tarakji et al. [4] note that OPMD diagnosis 

requires competent clinical evaluation and 

histopathology, with specialists typically 

outperforming general practitioners. Addressing this 

gap requires ongoing training and supportive 

diagnostic tools. Many adjunctive tests have been 

proposed to enhance early recognition and risk 

assessment. Among these, AI-based approaches using 

clinical images provide a promising means of 

streamlining diagnostic processes by using computer-

vision tools to distinguish OPMD from malignant 

lesions [5, 6], speed referrals [7], support biopsy 

decisions, and mitigate limitations of traditional 

examinations that rely on clinical indicators like 

erythema and ulceration [8, 9], which can also be 

present in OPMDs. Consequently, CNN-based systems 

trained on white-light imagery commonly explore two 

essential tasks: lesion detection and image 

categorization [10]. Applying both elements is key to 

building reliable diagnostic systems. 

Object detection is a computer-vision technique that 

identifies where objects appear in an image—typically 

through bounding boxes—and assigns each object to a 

class [11]. These methods are valuable in clinical 

contexts because they highlight suspicious locations 

within oral images, reducing the chance of missing 

subtle abnormalities. They also allow integration into 

workflows that first locate a lesion and then classify it. 

Prominent models used for oral-disease tasks include 

YOLO, Faster R-CNN, RetinaNet, and CenterNet2. 

They are particularly useful for recognizing smooth 

leukoplakias that might be missed in routine 

inspection. Still, several limitations persist, including 

scarce datasets, the absence of external testing, and 

difficulty identifying very small lesions [12-16]. 

Classification models, on the other hand, generate 

diagnostic outcomes for whole images or for selected 

regions without the need to outline the full margins of 

a lesion. By extracting visual cues from clinical 

photographs, these systems are capable of 

differentiating harmless findings from potentially 

malignant or overtly malignant conditions, helping 

prioritize referrals and supporting decision-making in 

settings with limited clinical expertise. Within the 

domain of oral pathology, CNN-based classification 

strategies have gained momentum for automating 

diagnostic triage and flagging cases that warrant 

specialist review [5, 17–23]. Nevertheless, these 

approaches still encounter obstacles related to the 

diversity of available datasets, the clarity of model 

outputs, and their practical deployment in routine care. 

The purpose of this work is to design both detection 

and classification models that assist in recognizing 

OPMD and OSCC at early stages, and to merge these 

components into a two-stage framework. The detection 

module narrows the analysis to the relevant areas of the 

image, while the classification module interprets the 

localized regions from a diagnostic standpoint. This 

ordered workflow not only improves the reliability of 

the final prediction but also mirrors the clinical 

sequence in which practitioners first identify a lesion 

and then assess its malignant potential. As a result, both 

interpretability and accuracy of the proposed solution 

are enhanced. 

Materials and Methods  

Dataset 

This retrospective cross-sectional project relied on a 

real-world collection of 773 clinical photographs 

obtained from individuals presenting with oral lesions 

at the Faculdade de Odontologia de Piracicaba, 

Universidade Estadual de Campinas (Piracicaba, São 

Paulo, Brazil) between 2000 and 2025. Images were 

separated into 380 OPMD and 393 OSCC cases. For 

external assessment, a supplementary group from the 

Federal University of Paraíba (UFPB) in João Pessoa, 

Paraíba, Brazil, contributed 53 OPMD and 79 OSCC 

images. Classification of both categories followed the 

criteria defined by the World Health Organization 

(WHO Classification of Tumours Editorial Board, 

2022). The OPMD set included conventional 

leukoplakia—with or without oral epithelial 

dysplasia—and proliferative verrucous leukoplakia, 

while the OSCC group incorporated multiple clinical 

and histological variants (conventional, verrucous, and 

incipient) to broaden the range of presentations. 

To maintain coherent diagnostic labeling and image 

quality, several exclusion rules were applied. 

Photographs with inadequate resolution were removed, 

as were samples linked to non-representative biopsies, 

defined as: (1) specimens diagnosed as OED despite 

clinical signs suggestive of OSCC, or (2) biopsies too 

small or technically compromised to establish a 

reliable diagnosis. If a patient underwent more than one 

biopsy due to notable clinical evolution, only images 

taken before each procedure were used, with at least a 
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three-month interval required between biopsies. All 

photographs were captured before any biopsy and were 

paired with histopathological confirmation. 

The dataset was divided non-randomly into training, 

validation, and test sets. Images from the same patient 

were kept together in the training subset to eliminate 

leakage, and the proportional distribution of the two 

major classes was preserved in each partition (Table 

1).

 

Table 1. Datasets. 

Class 
Training 

(80%) 

Validation 

(10%) 

Test 

(10%) 

Total Baseline 

Dataset (FOP-

UNICAMP) 

External 

Validation Dataset 

(UFPB) 

Overall 

Total 

OPMD (Oral 

Potentially Malignant 

Disorders) 

312 34 34 380 53 433 

OSCC (Oral 

Squamous Cell 

Carcinoma) 

316 39 38 393 79 472 

Total 628 73 72 773 132 905 

 

OPMD, oral potentially malignant disorder; OSCC, 

oral squamous cell carcinoma. 

Bounding-box annotation was carried out by A.L.D.A., 

with C.S.S. consulted to achieve agreement. Labeling 

was performed using Aperio ImageScope (Leica 

Biosystems) with a Huion Inspiroy H1060P tablet, and 

annotators were kept blinded to the diagnostic 

category. Lesions were enclosed within rectangular 

regions. 

The project followed the Checklist for Artificial 

Intelligence in Medical Imaging (CLAIM) [24] and the 

MAIC-10 criteria [25]. Ethical approval was provided 

by the Piracicaba Dental School Ethical Committee 

(Registration 42235421.9.0000.5418) and the Federal 

University of Paraíba Ethical Committee (Registration 

72314323.0.0000.5188). Material Transfer 

Agreements were included to enable the exchange of 

image data between institutions. 

 

Workstation 

All processing took place in Google Colab within a 

uniform virtual environment. The system utilized an 

Intel(R) Xeon(R) CPU running at 2.00 GHz (2 threads, 

1 physical core) with 39 MB L3 cache, and an NVIDIA 

Tesla T4 GPU providing 15,360 MiB of VRAM 

(CUDA 12.4, Driver 550.54.15). 

 

Object detection task 

YOLO (You Only Look Once) [26] is a high-speed, 

convolutional-network–driven framework for 

detecting objects within images. Instead of relying on 

multi-stage region proposals or sequential processing, 

YOLO reframes detection as a unified regression task 

in which the entire image is analyzed simultaneously. 

The image is partitioned into a grid, and each grid 

segment predicts bounding boxes, confidence values, 

and class likelihoods. This design allows the method to 

operate at real-time speeds while maintaining 

competitive accuracy. Its end-to-end training scheme 

also simplifies optimization, making it widely adopted 

in fields ranging from surveillance and autonomous 

navigation to medical imaging. 

YOLOv11 [27], the newest member of the YOLO 

family, incorporates several architectural upgrades 

intended to boost performance in diverse computer-

vision scenarios. Among the most notable additions are 

the C3k2 block (a Cross-Stage-Partial variant using 

kernel size 2), the SPPF (Spatial Pyramid Pooling—

Fast), and the C2PSA module (a parallel spatial-

attention convolutional block). Collectively, these 

components enhance representational strength and 

computational efficiency. 

For this study, ten detector models were constructed 

across four YOLOv11 variants: YOLOv11n (2.6M 

parameters), YOLOv11s (9.4M), YOLOv11m 

(20.1M), and YOLOv11l (25.3M). Each version was 

paired with specific augmentation schemes to examine 

performance differences. All detectors were initialized 

using pretrained COCO weights [28] and trained for 

200 epochs with images standardized to 640 × 640 

pixels. The augmentation operations included hue 

shifts (±0.015), saturation changes (±0.7), translation 

(±10% of image dimensions), and scale adjustments 

(±50%). Horizontal flips were applied at a 0.5 

probability. Additional variations incorporated mosaic 

augmentation, wherein one to four images are 

randomly fused during training. 

Evaluation of the detection models used mean Average 

Precision at 50% IoU (mAP50) as the main 

performance metric, with emphasis on accurate lesion 

localization. A single class (“lesion”—combining 

OPMD and OSCC) was used, as preliminary 

experiments indicated that while the model localized 
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regions well, discrimination between the two lesion 

types was very poor; when treated as separate classes, 

mAP50 fell to roughly 22%. Because the task 

effectively becomes single-class detection, AUROC 

was not computed. Precision, Recall, and F1-Score 

were also obtained using the Ultralytics built-in 

evaluation tools. 

While mAP50 was used for consistency with standard 

detection literature, it should be recognized that for a 

single-class task, mAP50 is identical to AP at IoU = 

0.5. Since AP corresponds to the area under the 

Precision–Recall curve (AUC-PR), AP and AUC-PR 

are mathematically equivalent. We therefore report AP 

only, following established norms in the field. 

 

Classification task 

Three MobileNetV2-based models [29, 30] were 

trained, each using different learning rates and 

augmentation configurations. Rather than full images, 

the classifiers received crops derived from the expert-

annotated bounding boxes. Learning rate values were 

selected through structured hyperparameter searches, 

guided by loss-curve behavior observed in pilot trials. 

All classifiers were initialized with ImageNet 

pretrained weights [31, 32] and trained for 200 epochs, 

with image inputs resized to 224 × 224 pixels. 

Augmentations included adjustments to brightness, 

contrast, and saturation (±0.2), hue changes (±0.1), and 

translations of up to ±10% of the image dimension. 

Random flips—both horizontal and vertical—were 

applied in multiple variants. Because the two classes 

were perfectly balanced, no class-imbalance 

corrections were required. 

Accuracy, precision, recall, F1-score, and AUC-ROC 

were computed using the scikit-learn toolkit [33]. After 

determining the optimal pairing of detector and 

classifier, the models were combined into a sequential 

framework in which the detector’s cropped outputs 

were forwarded directly to the classification stage. 

Results and Discussion 

Object detection 

Across the lesion-detection experiments, the 

YOLOv11 configurations displayed a range of 

performance, with mAP50 values spanning 0.718–

0.820 depending on the augmentation scheme. The 

most effective setup incorporated Albumentations with 

mild blur, grayscale conversion, CLAHE [34], and 

restrained geometric modifications—specifically an 

80° rotation and a very small 0.001 perspective 

adjustment. This combination reached the top mAP50 

(0.820), precision (0.897), and F1-score (0.813). 

Although its recall (0.744) was marginally below that 

of a few alternative variants, the notable improvement 

in precision and the resulting balanced F1-metric 

suggest an advantageous compromise (Table 2). 

Qualitative review of the detections demonstrated 

stable lesion localization across various oral images, 

shown through bounding boxes and confidence 

estimates. Overall, tailored augmentation—

particularly rotation and subtle perspective changes—

enhanced detection outcomes on the baseline-derived 

test set (Figure 1).

 

Table 2. summarizes YOLOv11 one-class detection metrics using the baseline dataset. Definitions: 

Model Albumentations Close_mosaic Degrees Perspective Flipud mAP50 Precision Recall 
F1-

Score 

YOLOv11n True 0 0.0 0.0 0.0 0.767 0.811 0.718 0.761 

YOLOv11n True 0 80.0 0.0 0.5 0.784 0.841 0.748 0.792 

YOLOv11n True 0 0.0 0.0 0.5 0.743 0.763 0.782 0.772 

YOLOv11n True 50 0.0 0.0 0.5 0.776 0.831 0.758 0.792 

YOLOv11n True 100 0.0 0.0 0.5 0.765 0.775 0.718 0.745 

YOLOv11s True 0 80.0 0.0 0.5 0.766 0.724 0.740 0.732 

YOLOv11m True 0 80.0 0.0 0.5 0.752 0.720 0.692 0.705 

YOLOv11l True 0 80.0 0.0 0.5 0.718 0.713 0.679 0.695 

YOLOv11n False 0 80.0 0.0 0.5 0.788 0.766 0.754 0.760 

YOLOv11n True 0 80.0 0.001 0.5 0.820 0.897 0.744 0.813 

 

Albumentations indicates the augmentation library; 

Close_mosaic describes a multi-image composite 

technique; Degrees corresponds to the rotation range; 

flipud denotes vertical flips; mAP is mean average 

precision; Perspective refers to the degree of geometric 

distortion. Bolded entries mark the best scores.
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Figure 1. presents YOLO-based lesion detection examples, with orange boxes indicating ground truth and 

blue boxes showing predictions with associated confidence values. 

 

Classification 

For lesion-classification tasks, MobileNetV2 models 

benefited most from applying both horizontal and 

vertical flipping. The configuration trained with a 

learning rate of 0.0001 alongside these dual flips 

produced the strongest results: accuracy 0.846 (95% 

CI: 0.756–0.923), precision 0.871 (95% CI: 0.817–

0.933), recall 0.846 (95% CI: 0.756–0.923), F1-score 

0.844 (95% CI: 0.756–0.923), and an AUC-ROC of 

0.852 (95% CI: 0.759–0.941), which was the second-

highest. Although not the top AUC-ROC, the gap was 

minimal (0.004), indicating negligible loss in 

discriminatory capability. Excluding vertical flips led 

to uniformly lower results, showing that combining 

both orientations improved generalization on the 

baseline test set. Lowering the learning rate to 0.00001 

produced slightly reduced scores, implying that a 

moderately small learning rate, together with richer 

augmentation is preferable (Table 3). 

After choosing this optimal MobileNetV2 setup 

(Model 2); (Table 3), external validation yielded 

accuracy 0.850 (0.798–0.902), precision 0.866 (0.822–

0.912), recall 0.850 (0.798–0.902), F1-score 0.851 

(0.799–0.902), and AUC-ROC 0.935 (0.900–0.968). 

 

Table 3. reports MobileNetV2 performance on expert-guided crops using the baseline dataset, with values 

shown as mean (95% CI) derived via 1,000 bootstrap runs. LR = learning rate. Best metrics are bold. 

Model 
Learning 

Rate 

Horizontal 

Flip 

Vertical 

Flip 

Accuracy 

(95% CI) 

Precision 

(95% CI) 

Recall 

(95% CI) 

F1-Score 

(95% CI) 

AUC-

ROC 

(95% CI) 

1 0.0001 True False 
0.743 (0.654 

– 0.846) 

0.750 (0.656 

– 0.852) 

0.743 

(0.654 – 

0.846) 

0.742 

(0.647 – 

0.846) 

0.823 

(0.725 – 

0.913) 

2 0.0001 True True 
0.846 (0.756 

– 0.923) 

0.871 (0.817 

– 0.933) 

0.846 

(0.756 – 

0.923) 

0.844 

(0.756 – 

0.923) 

0.852 

(0.759 – 

0.941) 

3 0.00001 True True 
0.820 (0.731 

– 0.897) 

0.844 (0.772 

– 0.909) 

0.820 

(0.731 – 

0.897) 

0.818 

(0.727 – 

0.897) 

0.856 

(0.755 – 

0.928) 

For the integrated two-stage method, we adopted the 

best MobileNetV2 classifier (Model 2), (Table 3) and 

applied it to cropped images obtained from the highest-

performing YOLOv11n model (Table 2), following an 

approach comparable to that described by Fu et al. [35]. 

Performance of this combined pipeline was also 

computed for the external validation set (Table 4).

 

https://www.frontiersin.org/files/Articles/1659323/froh-06-1659323-HTML-r1/image_m/froh-06-1659323-g001.jpg
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Table 4. presents the resulting metrics, expressed as mean (95% CI) using 1,000 bootstrap samples. Bold 

values highlight the strongest results. 

Dataset 
Accuracy (95% 

CI) 

Precision (95% 

CI) 

Recall (95% 

CI) 

F1-Score 

(95% CI) 

AUC-ROC 

(95% CI) 

Baseline dataset (FOP-

UNICAMP) 

0.784 (0.696 – 

0.863) 

0.793 (0.712 – 

0.872) 

0.784 (0.696 – 

0.863) 

0.784 (0.696 – 

0.863) 

0.811 (0.712 – 

0.889) 

External validation 

dataset (UFPB) 

0.863 (0.806 – 

0.914) 

0.879 (0.831 – 

0.928) 

0.863 (0.806 – 

0.914) 

0.866 (0.807 – 

0.916) 

0.934 (0.883 – 

0.975) 

ᵃTest set corresponds to the baseline dataset (FOP-UNICAMP). 

 

Visual examination plays a crucial role because relying 

only on YOLO’s numerical metrics may not fully 

capture how well the detector behaves in practice. 

Reviewing the model’s actual predictions offers an 

additional layer of understanding that improves 

interpretability (Figure 2).

 

  
a) b) 

  

c) d) 

Figure 2. Qualitative assessment of YOLO’s output. (a) Illustration of a highly accurate prediction, where the 

model’s bounding box almost perfectly aligns with the reference annotation (ground truth shown in orange). 

(b) In certain instances, experts annotated lesions with multiple bounding boxes to represent their full extent. 

YOLO, however, tends to generate a single box, which may not include all annotated regions. This indicates 

that the detector may struggle with large or irregular lesions that cannot be captured using only one bounding 

region. As a result, only the area enclosed by the model-generated blue box is passed on to the MobileNetV2 

classifier, which in some situations can deprive the classifier of essential contextual information, leading to 

mislabeling. (c) Example of a case where the model failed to detect any lesion. Within the external validation 

set of 132 images, 23 (17.4%) produced no detection box, and such images were consequently excluded from 

the classification step. (d) Illustration of YOLO predicting one extensive bounding box that covers the 

affected region containing multiple expert annotations. Although the detection is clinically accurate, the mAP 

metric is penalized because the model outputs fewer boxes than the ground truth, demonstrating how visual 

correctness may diverge from quantitative scoring. 
. 

t-SNE plot 

We additionally generated a t-SNE projection of the 

feature embeddings derived from the two-stage 

workflow (YOLOv11n + MobileNetV2) on the 

external validation images, mapping them into two 

dimensions to qualitatively explore the learned 

representations. As shown in Figure 3, the 

visualization reveals partial differentiation between 
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OPMD and OSCC images. Distinct clusters dominated 

by one class emerge, suggesting that the model 

successfully recognizes meaningful, class-related 

information. Nonetheless, a considerable overlap 

region—particularly in the central and lower areas of 

the plot—shows points from both categories 

interspersed. This pattern indicates that while 

MobileNetV2 captures discriminative features, the two 

classes still share substantial visual similarity in many 

samples. The overlapping clusters likely represent 

diagnostically ambiguous lesions rather than any 

substantial flaw in the model, reflecting the reality that 

borderline cases often present nearly identical visual 

patterns. Consequently, classification mistakes tend to 

occur within this mixed region, highlighting the natural 

limit imposed by the dataset’s complexity. This t-SNE 

distribution, therefore, helps explain the model’s 

performance constraints: some errors are rooted in the 

inherent challenge of the problem rather than 

inadequacies in feature learning.

 

 
Figure 3. t-SNE mapping of embeddings from the external validation set. Each dot corresponds to an image’s 

feature representation in two dimensions, with nearby points indicating similar learned features. Color coding 

reflects the true class labels: red indicates oral potentially malignant disorders (OPMD), and blue corresponds 

to oral squamous cell carcinoma (OSCC). The overlap of blue and red points in the central and lower zones 

illustrates OSCC samples that share close visual resemblance to OPMDs. 

 

The goal of this investigation was to construct 

detection and classification models to support oral 

cancer screening within a mobile application 

environment using standardized photographic 

acquisition. The findings align with previous studies 

showing that initializing models with COCO pre-

trained weights can speed up learning and enhance 

detection outcomes [12–15]. Consistent with the 

conclusions of Welikala et al. [16], our results also 

indicate that ImageNet-based initialization may offer 

improved transfer effectiveness for clinical imaging 

tasks, likely due to broader variability and richer low-

level features. Even with the use of widely adopted 

frameworks such as YOLO and Faster R-CNN, 

together with accepted strategies like extensive 

augmentation and consensus labeling, the performance 

remains influenced by annotation subjectivity and the 

difficulty of identifying small or subtle lesions, 

particularly those associated with OPMDs. However, 

prior reports showing that AI models can perform on 

par with or even outperform clinicians suggest that 

such systems hold considerable promise in supporting 

early OSCC detection—especially when embedded in 

mobile, user-friendly tools designed to complement 

everyday clinical practice. 

Our two-stage framework parallels the strategy 

described by Fu et al. [35], who employed backbone 

architectures for both detection and classification, 

https://www.frontiersin.org/files/Articles/1659323/froh-06-1659323-HTML-r1/image_m/froh-06-1659323-g003.jpg
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using bounding boxes to localize lesions in clinical 

photographs and then passing the cropped areas to the 

classifier. Direct comparison with their results is not 

feasible because detection outcomes were not provided 

in their work. Nevertheless, the performance of our 

combined pipeline on the external validation dataset—

AUC = 0.934 (95% CI: 0.883–0.975)—closely 

matches the value reported by Fu et al. [AUC = 0.935 

(95% CI: 0.910–0.957)], indicating that our method 

reaches a similar discriminative capability despite 

variations in datasets and preprocessing. The 

reproducibility of results in external validation 

strengthens the likelihood that our system can 

generalize to independent cohorts. Still, it is crucial to 

acknowledge that YOLO detections may introduce 

constraints; for example, bounding boxes may only 

partly capture the lesion, or the lesion may be missed 

entirely. Such limitations should be considered when 

interpreting the final performance of the two-step 

pipeline, as they may influence the classifier’s 

evaluation. 

Consistent with most existing publications [12–15], 

our work also employed COCO-derived weights for 

initialization in the detection stage, accelerating 

training and improving performance due to the broad 

prior knowledge embedded in that dataset. Only one 

earlier report [16] relied on ImageNet as the pre-

training source, and their enhanced recall and F1-score 

indicate that ImageNet may offer stronger feature 

transfer for clinical imagery, potentially due to its 

wider visual diversity and richer low-level descriptors. 

Even so, pre-training cannot be assumed to guarantee 

superiority, since models, datasets, and target 

categories vary considerably across studies, and 

additional factors—including data augmentation 

protocols, balancing strategies, and IoU thresholds—

can substantially influence outcomes. 

It is well recognized that lesion labeling (segmentation 

or bounding-box definition) carries intrinsic 

subjectivity from clinical interpretation, which may 

propagate bias into the models when annotations come 

from a single reader. Many studies define ground truth 

using the region of maximal overlap among annotators 

[13-15], while others rely on aggregated labels from 

multiple experts [16]. In our methodology, two 

annotators reached agreement on each lesion to create 

a unified bounding box (except in cases where lesion 

size or configuration required more than one), thereby 

simplifying processing while maintaining annotation 

consistency. 

A comprehensive review of the literature revealed five 

relevant investigations [12-16] that applied object 

detection architectures. These included various YOLO 

versions [12-14], Faster R-CNN [13-16], RetinaNet 

[13], and CenterNet2 [14]. YOLO emerged as the most 

common approach, used in all studies except [15, 16]. 

Its popularity likely reflects the model’s direct 

bounding-box regression mechanism, compact 

architecture, and straightforward deployment—

attributes that are advantageous for real-time or mobile 

environments [26]. However, an important drawback is 

the reduced sensitivity of some YOLO variants when 

dealing with very small targets [36]. 

Regarding sampling design, our baseline dataset was 

divided using an 80:10:10 scheme, and a distinct test 

subset derived from the same dataset was used to 

evaluate generalization. Additionally, we employed an 

external validation dataset to strengthen the assessment 

of model robustness, following guidance from Cerdá-

Alberich et al. and Tejani et al. [24, 25]. The 80:10:10 

division aligns with the strategy reported by Tanriver 

et al. [12], although it is not the prevailing approach in 

the object detection literature. When data volume is 

limited, five-fold cross-validation remains a strong 

option [13–15], and supplemental techniques such as 

bootstrapping, ensembling, label smoothing, stratified 

or nested cross-validation, and early stopping are 

recommended to mitigate heterogeneity, labeling 

inaccuracies, and overfitting, thus promoting more 

stable and transferable models [37]. 

For evaluating detection performance, commonly 

recommended metrics include precision, recall 

(sensitivity), F1-score, Intersection over Union (IoU), 

and mean Average Precision (mAP). Among these, 

mAP provides the broadest assessment because it 

examines performance across confidence thresholds, 

across classes, and across varying object complexities 

[28]. Despite its importance, only the present work and 

one earlier study [12] reported mAP. IoU is also 

noteworthy as a stringent measure—quantifying how 

well predictions overlap with their corresponding 

annotations—and often penalizes predictions that are 

directionally correct but not perfectly aligned, 

particularly in the presence of small, complex, or 

irregular lesions. 

Warin et al. [14] evaluated how accurately AI systems 

detect OSCC compared with oral and maxillofacial 

surgeons. Interestingly, even their weakest-performing 

algorithm—CenterNet2—surpassed the surgeons in 

OSCC detection. In contrast, clinicians demonstrated 

superior sensitivity for identifying OPMD. This likely 

reflects the heterogeneous and often subtle nature of 

OPMDs, whose visual characteristics can resemble 

other oral conditions and pose challenges even for 

seasoned specialists. Prior research also indicates that 

fast object-detection architectures may struggle to 
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capture the finer details required to reliably detect 

OPMDs. 

One advantage of the present study is that the baseline 

dataset spans a 25-year interval (2000–2025), 

introducing natural variation in imaging conditions 

(e.g., device type, illumination), which may contribute 

to more robust model performance when annotations 

are consistent. The dataset also maintains an 

approximate class balance, reducing the need for 

extensive reweighting or oversampling [38]. 

Nevertheless, we employed data augmentation 

procedures to reinforce the training process, an 

essential step given the relatively modest dataset size. 

Importantly, the dataset includes early and advanced 

OSCC as well as multiple OPMD subcategories, 

supporting clinical realism. Some subclasses contain 

few samples, which reflects the actual distribution of 

lesion types seen in practice. 

As with most medical deep learning studies, our work 

is constrained by the limited number of annotated 

images, since DL models generally benefit from very 

large training sets. To mitigate this, we incorporated 

augmentation strategies and used a well-defined 

training/validation split to monitor loss progression and 

apply early stopping when appropriate. A separate test 

partition was then used to estimate generalization. In 

addition, an external dataset—captured with different 

equipment, acquisition conditions, and geographic 

origins—was used for validation. The strong 

performance on this independent dataset suggests that 

overfitting was unlikely. However, a subset of images 

(17.4%) yielded no detection box and therefore could 

not proceed to the classification stage. This restriction 

may introduce bias by decreasing the number of 

evaluable samples and possibly overlooking specific 

lesion forms. Another limitation is that augmentation 

parameters were adopted directly from the YOLO 

defaults rather than optimized for this dataset; refining 

these settings through ablation studies is planned for 

future investigation. Although we did not implement 

formal explainability tools, the YOLO detection stage 

naturally provides some interpretability via object 

localization. Because the MobileNetV2 classifier 

receives only cropped regions, methods such as Grad-

CAM would offer limited additional insight. 

Nonetheless, explainability remains essential for 

clinical trust, and we intend to explore approaches like 

Grad-CAM [39, 40] and SHAP [41] moving forward. 

Currently, no technology has conclusively 

demonstrated superior sensitivity or specificity for oral 

cancer screening compared with standard intraoral 

examination [42]. Screening, by definition, involves 

applying a test to individuals without symptoms to 

identify disease at an early, more treatable stage [3]. 

Therefore, AI tools that classify already-noticed 

lesions do not function as true screening modalities; 

they instead operate as decision-support systems that 

assist clinicians in evaluating findings detected during 

the clinical exam. Evidence is also insufficient to show 

that such systems modify disease progression or reduce 

mortality. Even with early diagnosis—whether AI-

assisted or not—leukoplakia frequently reappears 

despite interventions such as surgery or CO₂ laser 

therapy [43]. Furthermore, whether accurately 

predicting malignant transformation risk would 

meaningfully alter outcomes remains uncertain. 

Conclusion 

This work presents an initial, proof-of-concept two-

stage pipeline for detecting oral cancer and 

distinguishing between OPMD and OSCC. Future 

research will involve a prospective study in which 

clinicians use a mobile application to aid diagnosis, 

providing a real-time, accessible, low-cost, and non-

invasive support tool for oral healthcare. 
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