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ABSTRACT

This study used finite element modeling to explore stress on the dental pulp and neuro-vascular bundle (NVB)
in second lower premolars. The analysis aimed to determine ischemic and resorptive risks from 2 N and 4 N
orthodontic forces applied during rotation, translation, tipping, intrusion, and extrusion in healthy
periodontium. Nine 3D models from nine patients were created, resulting in a total of 90 simulations. Both
force levels produced similar stress patterns across the five movements, with 4 N approximately doubling stress
magnitudes compared to 2 N. The NVB consistently showed the highest stress, but all values remained below
the physiological maximum hydrostatic pressure (16—22 KPa). Rotation generated the greatest stress, followed
by intrusion and extrusion, while translation produced the lowest. Forces of 2 N and 4 N appear safe for healthy
teeth in intact periodontium. Nonetheless, rotation and translation may cause localized stress in the coronal
pulp, potentially affecting previously treated teeth (direct or indirect pulp capping). Intrusion and extrusion
create higher NVB deformation, which could influence teeth with prior trauma, such as occlusal injuries.
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Introduction

Orthodontic procedures place the dental pulp and
neuro-vascular bundle (NVB) at risk of reduced blood
flow and ischemic damage, which can lead to pulp
necrosis or inflammation. Teeth that have experienced
trauma, such as occlusal injuries [1, 2], or prior
interventions involving the pulp (e.g., direct or indirect
pulp capping) [3—6], have diminished capacity to
respond to stress and maintain tissue health.

The periodontal ligament (PDL) serves as the primary
shock absorber for forces applied during orthodontic
treatment, shielding the pulp and NVB from excessive
stress [3—6]. In anatomical terms, the NVB resides in
the apical third of the PDL and is directly exposed to
mechanical load, whereas the pulp is contained within
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the pulp chamber and root canals [3-5]. The PDL
contains an extensive network of blood vessels that
sustain local circulation and metabolism, supporting
the ligament itself, the pulp, and adjacent bone [3-5].
Normal physiological pressure in this system ranges
from 16 to 22 KPa, representing the maximum
hydrostatic pressure (MHP), which approximates 80%
of systolic blood pressure [3, 7-10].

In teeth with healthy periodontium, small orthodontic
forces induce only limited -circulatory changes,
sufficient to trigger normal PDL and bone remodeling
[4, 11, 12]. However, when applied forces exceed the
MHP for prolonged periods, local vessels may
collapse, sharply increasing the risk of ischemia and
tissue resorption [3, 13, 14]. Accordingly, the type,
magnitude, and duration of applied orthodontic forces
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directly influence the likelihood of circulatory
disturbances and degenerative changes in the pulp and
NVB [3-5, 15-17]. Teeth or periodontium previously
subjected to trauma or injury [15, 17, 18] show
structural and functional alterations that heighten
susceptibility to ischemic and resorptive events
compared with uninjured teeth [3-6, 19-28].

It should be noted that direct observation of the dental
pulp and neuro-vascular bundle (NVB) is not possible.
Consequently, morphological or functional changes are
typically detected only after clinical symptoms, such as
pulpitis and related complications, appear [15-35].
Nevertheless, numerical simulations can indirectly
assess these tissues by evaluating stress patterns
induced by orthodontic forces, allowing estimation of
ischemic and resorptive risks [3-5].

Clinical and numerical studies have indicated that light
orthodontic forces in the range of 0.5—1 N are generally
safe for teeth with intact periodontium [4, 36-39].
However, higher forces have been associated with
ischemic responses and regressive tissue changes [11,
12, 40, 41]. The optimal magnitude of orthodontic
force remains under debate, highlighting the need for
further evidence [3—5]. Many in vivo studies suffer
from methodological limitations, emphasizing the
importance of new research with robust methodology
and clinical correlation focused on stress distribution
[12, 30, 40].

Currently, only a limited number of numerical studies
directly examine the dental pulp and NVB, some
conducted by our group [4, 5, 37-39], whereas more
studies target the PDL, particularly its apical third
containing the NVB. Yet, most PDL-focused studies
have produced inconsistent results due to
methodological flaws. Our prior work addressed these
issues and proposed a more reliable methodology for
accurate stress assessment [4, 5, 37-39, 42—44]. Recent
numerical investigations indicate that orthodontic
forces from 0.28 to 4 N are tolerated by periodontal
tissues without major functional compromise [7, 8, 42,
43, 45], contradicting earlier reports that support
exclusively light forces [4, 5, 36-39]. Properly
conducted finite element analyses further suggest that
the pulp and NVB experience comparatively lower
stress even under forces exceeding 1 N.

Despite the advantages of numerical methods in
producing precise results, critical factors such as failure
criteria, boundary conditions, sample size, and
anatomical fidelity must be carefully addressed [3-5,
37-39, 42-44, 46]. Previous studies often overlooked
these aspects, leading to results of questionable
accuracy, including findings that
contradicted clinical observations or exceeded
physiological MHP, even under light forces [7-10, 15—

sometimes

18, 30, 46—62]. However, all current numerical models
correctly apply linear elasticity, isotropy, and
homogeneity assumptions for dental tissues, as
validated by multiple reports [3-5, 37-39, 4244, 46].
Therefore, to accurately characterize stress distribution
in the dental pulp and NVB—structures too small and
complex for direct in vivo examination—the most
reliable approach remains numerical analysis using 3D
models derived from cone-beam computed
tomography (CBCT) [3-5, 37-39, 42-43].

This investigation is part of an ongoing stepwise
project (clinical protocol 158/02.04.2018) examining
the effects of orthodontic forces on dental tissues
across various levels of periodontal health [4, 5, 37—
44]. Our prior research was the first to point out
limitations in the finite element method’s accuracy for
dental studies and to establish a reliable protocol to
overcome these issues.

The present study aims to provide new insights into
how larger orthodontic forces affect the dental pulp and
neuro-vascular bundle (NVB). Stress distributions
generated by 2 N and 4 N forces were simulated during
five common orthodontic movements—rotation,
translation, tipping, intrusion, and extrusion—in teeth
with intact periodontium. Additionally, ischemic and
degenerative-resorptive risks were assessed by
comparing the simulated stresses with the
physiological maximum hydrostatic pressure (MHP).

Materials and Methods

This study evaluated stress in the dental pulp and
neuro-vascular bundle (NVB) of teeth with intact
periodontium using nine 3D models of the second
lower premolar, resulting in 90 simulations. The
sample comprised nine patients (four males, five
females) with a mean age of 29.81 + 1.45 years [4, 5,
37-44].

Teeth were selected only if intact, properly aligned,
free of prior treatments (endodontics, fillings, crowns),
and with minimal bone loss (<1-2 mm). Adequate oral
hygiene and an indication for orthodontic treatment
were also required. Teeth were excluded if they had
unusual root shapes (e.g., double non-fused roots,
extreme curvature), abnormal crowns, temporary teeth,
root defects (e.g., external resorption), radiographic
bone defects, irregular pulp chambers or canals, bone
loss >2 mm, or visible inflammation.

The second lower premolar and its adjacent teeth were
scanned with CBCT (ProMax 3DS, Planmeca,
Helsinki, Finland) at 0.075 mm voxel size. Manual
reconstruction was done using Amira 5.4.0 (Visage
Imaging Inc., Andover, MA, USA) due to anatomical
complexity. Each tissue—enamel, dentine, dental pulp,
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NVB,  periodontal ligament (PDL), and
cortical/trabecular bone—was segmented separately
(Figure 1). Cementum was modeled as dentine

because of similar physical and imaging properties
(Table 1). The PDL’s natural thickness (0.15-0.225
mm) was preserved to maintain NVB positioning.
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Figure 1. Mesh overview of a single 3D model: a) second lower right premolar with intact periodontium, b)
isolated premolar, ¢) dental pulp and NVB, d) premolar including pulp and NVB, ¢) premolar mesh with
minor warnings, f) pulp/NVB mesh warnings. Force vectors applied: g) extrusion, h) intrusion, i) rotation, j)

tipping, k) translation.

Table 1. Material properties.

Material Elastic Modulus (GPa) Poisson’s Ratio Sources
Tooth Enamel 80 0.33 [4,5,37-39, 42-44]
Dentin/Cementum Layer 18.6 0.31 [4,5,37-39, 42-44]
Pulp and Neurovascular Bundle 0.0021 0.45 [4,5,37-39, 42-44]
Periodontal Ligament (PDL) 0.0667 0.49 [4, 5, 37-39, 42-44]
Cortical Bone Tissue 14.5 0.323 [4,5,37-39, 42-44]
Trabecular Bone Tissue 1.37 0.3 [4,5,37-39, 42-44]
Stainless Steel Bracket (Cr-Co Alloy) 218 0.33 [4,5,37-39, 42-44]

In all nine models, the second lower premolar was
preserved, and missing alveolar bone was rebuilt with
trabecular and cortical components to reconstruct intact
periodontium. A standardized stainless-steel bracket
base was added to the vestibular crown to prevent
variations in force application.

Meshes contained 5.06-6.05 million tetrahedral
elements (C3D4) and 0.97-1.07 million nodes, with
global element sizes from 0.08 to 0.116 mm. Manual
reconstruction caused a few warnings: 39 for the tooth
(0.00589% of 661,137 elements) and 4 for pulp/NVB
(0.0158% of 25,252 elements). All warnings were in
non-critical areas, and internal checks confirmed
model integrity.

Simulations used Abaqus 6.13—1 (Dassault Systémes
Simulia, Maastricht, Netherlands). The five
orthodontic movements—rotation, translation, tipping,
intrusion, and extrusion—were applied with 2 N and 4

N forces. Tresca’s failure criterion, suitable for ductile-
like dental tissues, was employed. Boundary
assumptions included encastered bases, perfectly
bonded interfaces, linear elasticity, isotropy, and
homogeneity.

Stress results were presented as color-coded maps
(red—orange: high, yellow—green: moderate, blue: low).
Values were compared to physiological maximum
hydrostatic pressure (16-22 KPa) to assess ischemic
risk in intact periodontium under higher orthodontic
loads.

Nine 3D models of second lower premolars with
minimal bone loss were reconstructed, preserving each
tooth and rebuilding surrounding bone and PDL for
intact periodontium. Stainless-steel bracket bases were
added on the vestibular crown surfaces to avoid design
interference.
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Meshes contained 5.06—6.05 million C3D4 tetrahedral
elements and 0.97-1.07 million nodes, with element
sizes 0.08—0.116 mm. Minor warnings appeared (39 in
tooth, 0.00589%:; 4 in pulp/NVB, 0.0158%), all in non-
critical regions, with no errors.

Simulations used Abaqus 6.13—1, testing rotation,
translation, tipping, intrusion, and extrusion under 2 N
and 4 N. Tresca criterion was applied, with boundary
conditions assuming encastered base, linear elasticity,
isotropy, and homogeneity. Stress maps (red—orange

high, yellow—green moderate, blue low) were
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compared with physiological MHP (16-22 KPa) to
assess ischemic risk in intact periodontium.

Results and Discussion

Stress was consistently highest in the NVB across all
movements and both force levels. The remaining dental
pulp showed only minor stress, reflecting protection
from the pulp chamber and root canals. Qualitatively,
both 2 N and 4 N forces produced similar patterns;
quantitatively, 4 N roughly doubled stress levels
compared to 2 N (Figure 2, Table 2).
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Figure 2. Stress comparison under 2 N and 4 N forces for one of the nine 3D models with intact
periodontium, showing five orthodontic movements: a) extrusion, b) intrusion, ¢) rotation, d) tipping, ¢)
translation.

Table 2. Average shear stress values (KPa) recorded in intact periodontium across the nine models under 2 N

and 4 N forces.
. Lateral Angular Upward Downward
Force . Rotational . . .
Tissue Type . Movemen Deviatio Displacement Displacement
Level Shift (mm)

t (mm) n (mm) (mm) (mm)
2N Neurovascular Bundle (NVB) 0.57 0.37 0.49 0.57 0.57
% NVB 1.00 1.00 1.00 1.00 1.00
Tooth Pulp 0.05 0.03 0.04 0.05 0.05
% Pulp 1.00 1.00 1.00 1.00 1.00
4N Neurovascular Bundle (NVB) 1.15 0.74 0.98 1.14 1.14
% NVB 1.00 1.00 1.00 1.00 1.00
Tooth Pulp 0.10 0.07 0.08 0.10 0.10
% Pulp 1.00 1.00 1.00 1.00 1.00

Abbreviations: NVB = neuro-vascular bundle; % NVB = frequency of stress increase in NVB; Pulp = apical third of dental pulp; % Pulp =

frequency of stress increase in pulp.

Across all nine patients (Table 2), stress levels caused
by 4 N forces remained below the physiological

maximum hydrostatic pressure (16 KPa). This
indicates that in healthy premolars with intact
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periodontium, 4 N does not create ischemic or
resorptive risk for the NVB or dental pulp. For
example, the NVB under rotational force experienced
stress roughly 21.6 times lower than the MHP.
Rotation was the most demanding movement,
producing the highest stress, followed by intrusion and
extrusion. Tipping and translation caused the lowest
stress levels. Color-coded maps (Figure 2) show most
NVB regions under moderate stress (yellow—green),
with only small orange—red zones that could generate
localized circulatory disturbances. Overall, average
stress values stayed below 16 KPa, suggesting
negligible risk for pulp necrosis or tissue resorption.
Coronal pulp stress appeared mainly during rotation
and translation, localized on vestibular, mesial, and
distal areas (blue shades in (Figures 2c¢ and 2e)).
Though below MHP, these regions could still
experience local circulatory disturbances, particularly
in teeth previously treated with pulp capping.
Translation appears most likely to provoke pulpal risk,
potentially leading to pulpitis. The other three
movements had minimal impact on coronal pulp.
Stress in the root canal pulp remained largely
unaffected by either movement type or force
magnitude. The NVB showed the greatest deformation
during intrusion and extrusion (Figures 2a and 2b),
suggesting that these movements may pose
degenerative or ischemic risks in teeth with prior
trauma.

This study, based on ninety numerical simulations of
second lower premolars, shows that in healthy intact
periodontium, orthodontic forces up to 4 N have
minimal impact on the dental pulp and NVB.
Quantitatively, the maximum stress in the NVB during
rotation—the most demanding movement, followed by
intrusion and extrusion—remained roughly twenty-one
times below the physiological maximum hydrostatic
pressure (MHP), while stress on the dental pulp was
even smaller.

These findings are consistent with our earlier
investigations using lighter forces under similar
conditions, including the same boundary assumptions,
movements, and 3D premolar models [4, 5], as well as
with other in vivo studies [15—18, 30] and Proffit ez al.
[36]. Previous research from our group highlighted the
tooth and PDL’s ability to absorb and dissipate loads,
showing that only a very small fraction of applied force
reaches the NVB and pulp [3-5, 37-39, 42, 43]. Given
that the NVB resides in the apical third of the PDL,
which acts as the main load buffer, these results are
biomechanically sound and agree with -clinical
observations [3-5, 37-39, 42, 43]. Because the
measured stresses (Table 2) are below 16 KPa, no

ischemic or degenerative—resorptive risk is expected in
healthy teeth with intact periodontium. However, the
PDL experiences the largest stress, suggesting that
further simulations are necessary to examine PDL
behavior under higher loads.

If a tooth has previously experienced trauma (e.g.,
occlusal trauma) [6, 15-28] or pulp injury from dental
procedures (direct or indirect pulp capping) [15-35],
both the NVB and pulp may be susceptible to ischemic
and degenerative-resorptive changes, in agreement
with other reports [1, 2]. In such cases, rotation and
translation movements can generate localized stress in
the coronal pulp—vestibular, mesial, and distal areas
(Figures 2¢ and 2e)—potentially causing circulatory
disturbances and related tissue risks [6, 19-28].
Intrusion and extrusion, producing greater NVB
deformation (Figures 2a and 2b), may also lead to
circulatory disturbances, ischemia, and degenerative—
resorptive changes, as supported by Minch ef al. [14]
and other studies [15-35].

It is also important to consider that aging itself causes
degenerative—resorptive changes in the dental pulp and
NVB, which cannot be fully assessed in vivo and may
increase ischemic vulnerability under higher forces [1,
15, 18, 29]. Additionally, current dental treatments
involving direct or indirect pulp capping can induce
local functional and structural changes, affecting long-
term tissue response to mechanical loading [1, 6, 15—
35].

Rotation produced the greatest stress among the five
orthodontic movements, as reported in our previous
work [3-5, 37-39, 42, 43], with intrusion and extrusion
following closely (Table 2). This finding agrees with
Minch et al. [14] and Hofman et al. [9, 10], who
identified intrusion as the movement causing the
highest stress in teeth with intact periodontium.
Because dental pulp and NVB are small and
anatomically complex, few studies have evaluated their
biomechanical ~ behavior  during  orthodontic
procedures. Since the NVB lies in the apical third of
the PDL, its mechanical response can be inferred from
the PDL. However, most prior numerical models did
not accurately include the NVB in the apical PDL [7-
10, 45], often resulting in stress values exceeding MHP
even under light forces. For example, Hofman ez al. [9,
10] reported stresses of 80 KPa for 1 N intrusion and
40 KPa for 3—6 N lingual torque, which suggests
extensive tissue risks not observed clinically. Wu et al.
[7, 8, 45] suggested 2.1-2.9 N as optimal for rotational
forces on a premolar, with stress below MHP at the
PDL apex and negligible stress at the cervical area—an
outcome inconsistent with clinical evidence [15-18,
30, 48, 49] and the recommendations of Proffit et al.
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[36] favoring light forces. By contrast, our models,
with higher anatomical fidelity, produce more accurate
results compared to previous numerical analyses [9,
10, 15-55].

It is important to note that our simulations used isolated
movements, whereas clinical practice often combines
motions, which could reduce local stress and the
qualitative color-coded distributions. Nevertheless,
numerical methods remain the only practical way to
assess stress in these intricate structures, as in vivo
approaches cannot provide detailed regional data.
Finally, several methodological factors directly
influence numerical accuracy, including choice of
failure criteria, boundary conditions, anatomical detail,
and sample size [9-55]. Failure to account for these
factors represents a major limitation in computational
analyses of dental tissues.

The selection of failure criteria depends on the material
type and is considered essential for obtaining precise
results [46]. Our previous studies [3-5, 37-39, 42, 43]
highlighted that dental tissues behave similarly to
ductile materials, making the Tresca criterion
appropriate for accurate numerical analyses. In
contrast, many prior studies [9, 10, 15-18, 30, 47-55]
overlooked this requirement, which, as our work has
shown, can lead to notable inaccuracies [3-5, 37-39,
42, 43].

Boundary conditions, particularly isotropy, linear
elasticity, and homogeneity, are commonly assumed in
numerical models, even though living tissues are
anisotropic and non-linear. Nevertheless, our earlier
work confirmed that such assumptions remain valid for
forces up to 2.4 N when the Tresca criterion is applied,
as small loads produce minimal tissue displacement,
satisfying linear elasticity requirements [3-5, 37-39,
42, 43].

The anatomical precision of the 3D models depends
heavily on the mesh density and node count. Our
models contained 6.05 million tetrahedral elements and
1.07 million nodes, with global element sizes ranging
from 0.08-0.116 mm-—significantly higher than
previous studies [9, 10, 15-55], which used 40-12,731
times fewer elements and 4.4-1463 times fewer nodes.
Furthermore, our models were reconstructed from
CBCT images rather than simplified idealized
geometries, and we included a larger sample size of
nine models compared with the single-model designs
commonly used.

We selected the mandibular premolar region because
most numerical analyses have focused on molars and
incisors, leaving premolars underrepresented despite
their functional role in occlusion and load distribution.
Traditional engineering approaches for numerical

studies typically rely on a single model, which is
sufficient to explore varying experimental conditions
[5, 7, 8, 38, 39, 46, 5659, 62]. However, to improve
accuracy and reliability, our study employed nine
models and a total of ninety simulations.

By following these essential criteria—including proper
failure criteria, boundary assumptions, anatomical
accuracy, and adequate sample size—our numerical
analysis achieved high reliability for dental tissue
behavior, comparable to engineering standards.
Nonetheless, numerical simulations cannot replicate all
clinical conditions; thus, results must be validated
against clinical data, such as the MHP, and interpreted
in the context of clinical knowledge. Future
investigations should evaluate the impact of larger
orthodontic forces on dental tissues during periodontal
breakdown, using the same methodology to assess
potential ischemic and resorptive risks.

Conclusion

1. In an intact periodontium, stress patterns under 2 N
and 4 N forces were comparable across the five
orthodontic movements, but the intensity doubled
for 4 N, with the NVB consistently experiencing the
highest stress.

2. Stress induced by both forces remained under the
physiological maximum hydrostatic pressure
(MHP), suggesting no ischemic or degenerative—
resorptive risk in healthy, untreated teeth.

3. Among the movements, rotation produced the
greatest stress, closely followed by intrusion and
extrusion; translation caused the least.

4. Rotation and translation caused localized stress in
the coronal pulp (vestibular and proximal regions),
which may pose risks in teeth previously treated
with direct or indirect pulp capping.

5. Intrusion and extrusion led to greater NVB
deformation, indicating that teeth with prior trauma
(e.g., occlusal injury) might experience circulatory
disruption, ischemia, or resorptive/degenerative
effects.

Practical implications

Research on the biomechanical response of the dental
pulp is limited, and NVB behavior during orthodontic
movements has not been previously studied. This study
provides the first detailed assessment of stress
distribution in both pulp and NVB under forces of 2—4
N in intact periodontium. These findings are clinically
relevant for planning orthodontic treatment and
evaluating whether applied forces could cause
ischemic or resorptive damage. Prior numerical studies
did not consider teeth with prior trauma or pulp
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treatment; our work addresses these gaps and
demonstrates that higher orthodontic forces may pose
risks under these conditions. From a biomechanical
perspective, this study introduces a validated numerical
methodology for analyzing pulp and NVB tissues,
fulfilling all critical criteria for accurate modeling in
dental biomechanics.
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