

Original Article**Modulation of Pro-Inflammatory Cytokine Release by Anti-Rheumatic Drugs in Oral Cells During Microbial Interactions****Andrés P. Rojas^{1*}, Hana T. Desta¹, Marco R. Bianchi¹**¹Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.***E-mail** andres.rojas@outlook.com**Received:** 04 August 2024; **Revised:** 29 October 2024; **Accepted:** 02 November 2024**ABSTRACT**

Individuals with rheumatoid arthritis (RA) who also have periodontitis often show reduced inflammation in periodontal tissues, likely as a consequence of anti-rheumatic therapy. This *in vitro* investigation explored whether common RA medications could affect the secretion of IL-8 and IL-1 β by both professional and non-professional immune cells when exposed to microbial stimuli. Periodontal ligament (PDL) fibroblasts, MONO-MAC-6 monocytes, and gingival keratinocytes were treated with ibuprofen, prednisolone, or methotrexate, either alone or in combination with lysates of *Fusobacterium nucleatum* or *Candida albicans*. Cytokine levels in the supernatants were then assessed, with IL-1 β measured exclusively in MONO-MAC-6 cells. Stimulation with *F. nucleatum* lysate triggered the most pronounced pro-inflammatory cytokine release in PDL fibroblasts and MONO-MAC-6 cells, whereas the impact of the anti-rheumatic drugs on cytokine production was generally limited. Interestingly, prednisolone enhanced IL-8 release from MONO-MAC-6 cells exposed to *F. nucleatum*, whereas methotrexate reduced it. Furthermore, anti-inflammatory drugs promoted the adherence of *C. albicans* to epithelial cells. These results highlight that, in RA patients, controlling subgingival microbial load remains essential, but anti-rheumatic therapies may influence the immune response to oral microorganisms.

Keywords: Oral cells, Rheumatoid arthritis, Periodontitis, Proinflammatory cytokines, Anti-inflammatory drugs

How to Cite This Article: Rojas AP, Desta HT, Bianchi MR. Modulation of Pro-Inflammatory Cytokine Release by Anti-Rheumatic Drugs in Oral Cells During Microbial Interactions. *J Curr Res Oral Surg*. 2024;4:149-60. <https://doi.org/10.51847/yn2D0s3M>

Introduction

Periodontitis ranks among the most prevalent chronic diseases globally, with severe cases affecting roughly 11% of the population [1]. The disease arises from a persistent inflammatory response to an imbalanced subgingival microbiota, ultimately leading to the breakdown of the tissues supporting teeth [2]. *Fusobacterium nucleatum*, an opportunistic bacterium, often acts as a bridge between commensal and pathogenic species, playing a central role in microbial pathogenicity [3]. Inflammasome activation is a key factor in periodontal tissue destruction, driving the maturation of pro-inflammatory cytokines such as interleukin (IL)-1 β and IL-18 [4]. IL-8 (CXCL9), a

chemokine of the CXC family, recruits neutrophils and triggers degranulation, with its expression levels correlating with disease severity [5, 6].

Periodontitis is not confined to local tissue damage but is associated with systemic conditions that can influence disease progression and treatment outcomes. Diabetes mellitus was among the first systemic disorders clearly linked to periodontal attachment loss [7]. More recently, rheumatoid arthritis (RA) has received significant attention due to its association with periodontitis. Analysis of health insurance data from over 500,000 individuals in South Korea revealed a higher prevalence of periodontitis among RA patients (19.6%) compared to non-RA individuals (16.6%), as well as a higher prevalence of RA in patients with

periodontitis (6.2%) compared to those without (5.2%) [8].

RA is a chronic systemic inflammatory disease, characterized by joint stiffness, swelling, and pain, often accompanied by autoantibodies against rheumatoid factor and citrullinated proteins [9]. In affected joints, inflammatory cell infiltration is accompanied by elevated concentrations of IL-1, IL-6, IL-8, IL-10, and MCP-1, potentially linked to neutrophil autophagy, which may contribute to disease pathogenesis [10, 11]. Historically, IL-1 and tumor necrosis factor (TNF) were identified as key mediators of bone and tissue destruction in RA, with IL-1 acting locally and TNF exerting systemic effects. Therapeutic strategies aim to control inflammation and reduce disease activity by limiting IL-1 and TNF activity [12]. Common treatments include disease-modifying anti-rheumatic drugs (DMARDs) and nonsteroidal anti-inflammatory drugs (NSAIDs) [9]. This study specifically examines methotrexate, a DMARD that reduces inflammation and enhances TNF inhibitor efficacy [12, 13]; ibuprofen, an NSAID that limits local inflammation by reversibly inhibiting COX-1 and COX-2 enzymes [13]; and prednisolone, a glucocorticoid that suppresses neutrophil migration and normalizes increased capillary permeability [14]. *Porphyromonas gingivalis*, a well-known periodontal pathogen, has been suggested as a potential link between periodontitis and RA, as its peptidyl arginine deiminase can citrullinate peptides, and RA patients show increased antibodies against this bacterium [15, 16]. However, recent animal studies indicate that other bacteria may also play important roles. Microbiome analyses have shown an enrichment of *F. nucleatum* in periodontitis compared to healthy periodontal tissues [17]. In murine models, exposure to *F. nucleatum* or *Aggregatibacter actinomycetemcomitans* accelerated arthritis onset and progression [18], and DNA from *F. nucleatum* has been detected in the synovial fluid of arthritis patients [19].

Previous investigations by our group revealed that tooth loss in RA patients did not always correlate with classical signs of periodontitis, such as deep probing depths or bleeding on probing [16, 20, 21]. This observation suggests that long-term use of anti-rheumatic drugs might suppress typical periodontal inflammation, prompting the question of whether these medications interfere with local immune responses. Additionally, *Candida albicans* was frequently detected in subgingival biofilm samples from RA patients, unlike in periodontally healthy individuals or periodontitis patients without systemic disease, justifying its inclusion in this study.

The current in vitro study aimed to address two primary questions: (i) whether anti-inflammatory drugs commonly used in RA therapy can modulate IL-8 and IL-1 β release from professional and non-professional oral immune cells, and (ii) how these drugs influence the interaction between these cells and microorganisms.

Materials and Methods

Cells

For the experiments, three cell types were utilized: periodontal ligament (PDL) fibroblasts, the human monocytic cell line MONO-MAC-6 (DSMZ no. ACC 124), and telomerase-immortalized gingival keratinocytes (TIGK; ATCC-CRL-3397). PDL fibroblasts were obtained from extracted teeth of three individual donors. All donors provided written consent for research use of their tissues, in line with the Cantonal Ethics Committee (KEK) guidelines. As the collected samples were fully anonymized and could not be traced back to the donors, formal ethical approval was not required. The isolation and culture of these cells followed established protocols [22].

PDL fibroblasts were maintained in DMEM, whereas MONO-MAC-6 cells were cultured in RPMI 1640, with both media supplemented with 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA). TIGK cells were grown in specialized Keratinocyte Growth Medium (KGM-Gold; Lonza, Basel, Switzerland).

Anti-rheumatic drugs

The following drugs were applied at the specified final concentrations in the experiments.

- ibuprofen (Brufen 600 mg, BGP Products GmbH, Baar, CH): 2, 10, and 50 μ g/ml
- prednisolone (Spricort 20, Spirig Health Care AG, Egerkingen, CH): 20, 100, and 500 ng/ml
- Methotrexate (Methotrexat Farmos 10 mg, Orion Pharma AG, Zug, CH): 1, 5, and 25 μ g/ml.

The selected drug concentrations were based on previously reported levels in plasma or tissues [23-25]. Cytotoxic effects at these concentrations were assessed using trypan blue exclusion assays. For the experiments, stock solutions of each drug were prepared in phosphate-buffered saline (PBS) and serially diluted at a 1:4 ratio. The initial dilution contained ten times the highest target concentration. PBS alone served as the negative control.

Microorganisms

For the study, lysates of *Fusobacterium nucleatum* (ATCC 25586) and *Candida albicans* (ATCC 76615)

were generated. Bacterial or fungal suspensions in PBS were adjusted to an OD600 of 1 and subjected to 20 minutes of ultrasonication at 280 W. The homogenized mixture was subsequently centrifuged at 10,000 \times g for 10 minutes at 20°C, and the clarified supernatant was passed through a 0.4 μ m filter. This treatment produced a preparation corresponding to an approximate MOI of 20:1 (bacteria:cells), allowing cell stimulation with microbial components rather than whole organisms. In the case of TIGK cells, *C. albicans* was prepared at an OD600 of 0.2 in PBS, resulting in a MOI of roughly 5:1 (fungi:cells) for experimental stimulation.

Methods MONO-MAC-6-cells

MONO-MAC-6 cells were first centrifuged at 250 \times g for 5 minutes, after which the supernatant was discarded. The cell pellet was washed twice with PBS and resuspended in RPMI 1640 medium containing 0.5% FBS to a final density of 1×10^6 cells/ml. For the assay, the cell suspension was combined with microbial lysate and the respective drug solution in an 8:1:1 ratio, and 1 ml of this mixture was added to each well of a 24-well plate. After plating, the cells were incubated for 18 hours. Following incubation, the contents of each well were transferred to 1.5 ml tubes and centrifuged at 10,000 \times g for 5 minutes at 20°C. The resulting supernatants were collected and stored at -80°C until subsequent analysis by ELISA.

Methods PDL fibroblasts

Prior to the assays, PDL fibroblasts were seeded into 24-well plates and cultured until they reached confluence. The culture medium was then removed, and the cells were washed twice with PBS. Subsequently, 1 ml of the drug-microbe-cell mixture, prepared at a 1:1:8 ratio, was added to each well. For these experiments, the FBS content in the medium was reduced to 0.5%, and cells were seeded at a density of 3×10^5 cells/cm². Only fibroblasts within five passages were used. The remaining steps followed the same protocol as described for MONO-MAC-6 cells. All experiments were performed in triplicate and repeated independently three times.

Methods TIGK cells

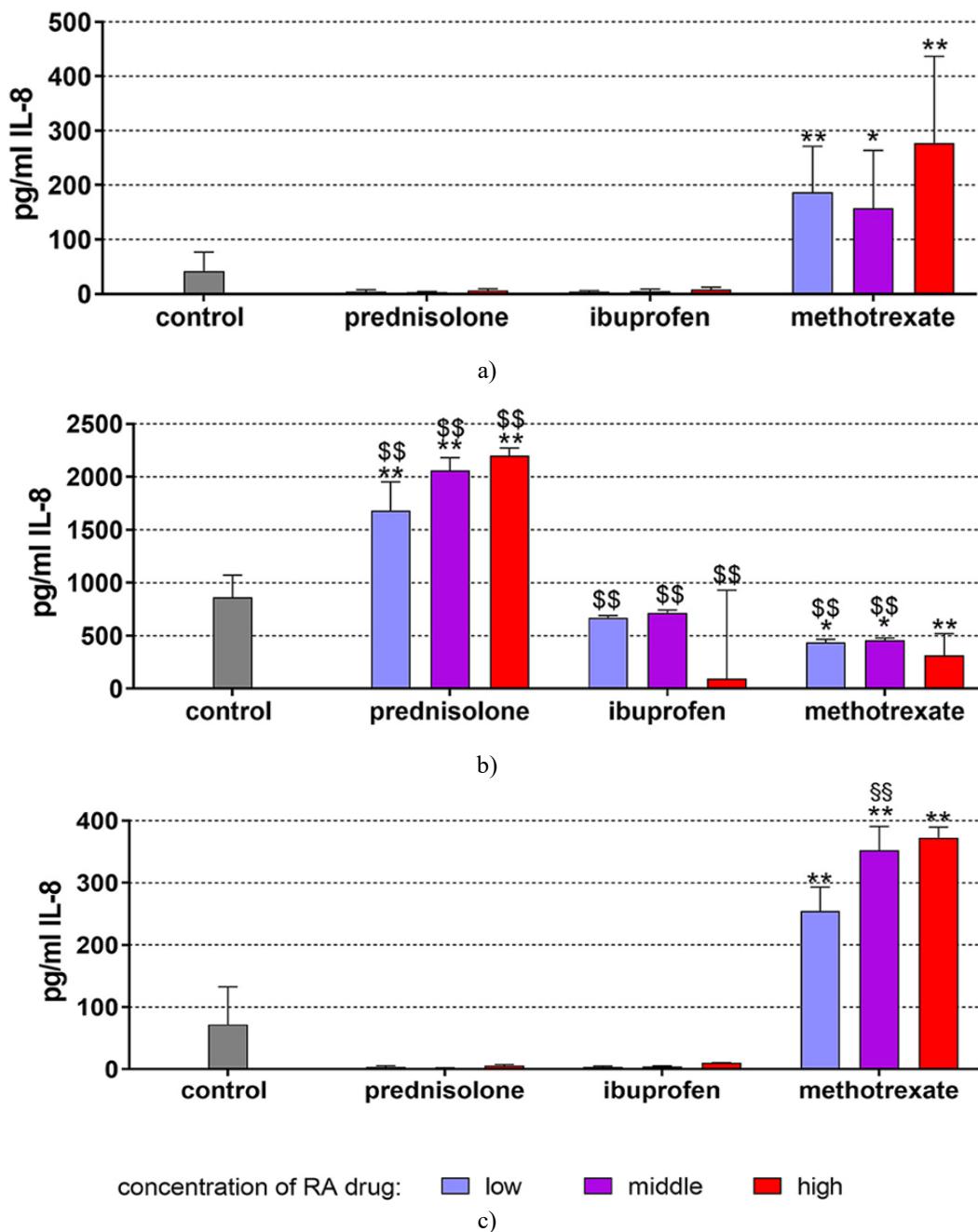
TIGK cells were prepared at a concentration of 1×10^5 cells/ml in culture medium, and 1 ml of this suspension was plated into each well of a 24-well plate 24 hours prior to the start of the experiments. On the day of the assay, the cells were examined to ensure appropriate confluence and then washed twice with PBS.

Subsequently, 1 ml of the drug-microbe-cell mixture, prepared at a 1:1:8 ratio, was added to each well containing TIGK cells. After 6 hours of incubation, the culture medium was collected, processed as previously described (centrifugation and storage of supernatants at -80°C).

Following this, the cells were washed twice with PBS to remove non-adherent *C. albicans*. Next, 1 ml of ice-cold distilled water was added to each well, and the plates were left for 15 minutes with thorough mixing to release adherent (including invasive) fungal cells. The resulting suspensions were then plated onto agar to quantify colony-forming units of *C. albicans*.

ELISA

Preliminary experiments were conducted to determine which biomarkers were most suitable for analysis. IL-8 was consistently released by all cell types, whereas IL-1 β was specifically measured in supernatants from MONO-MAC-6 cells following microbial exposure. Cytokine levels were quantified using ELISA kits (R&D Systems, Minnesota, MN, USA) in accordance with the manufacturer's guidelines. The assays had a minimum detection threshold of 1 pg/ml for both IL-8 and IL-1 β .


Statistical analysis

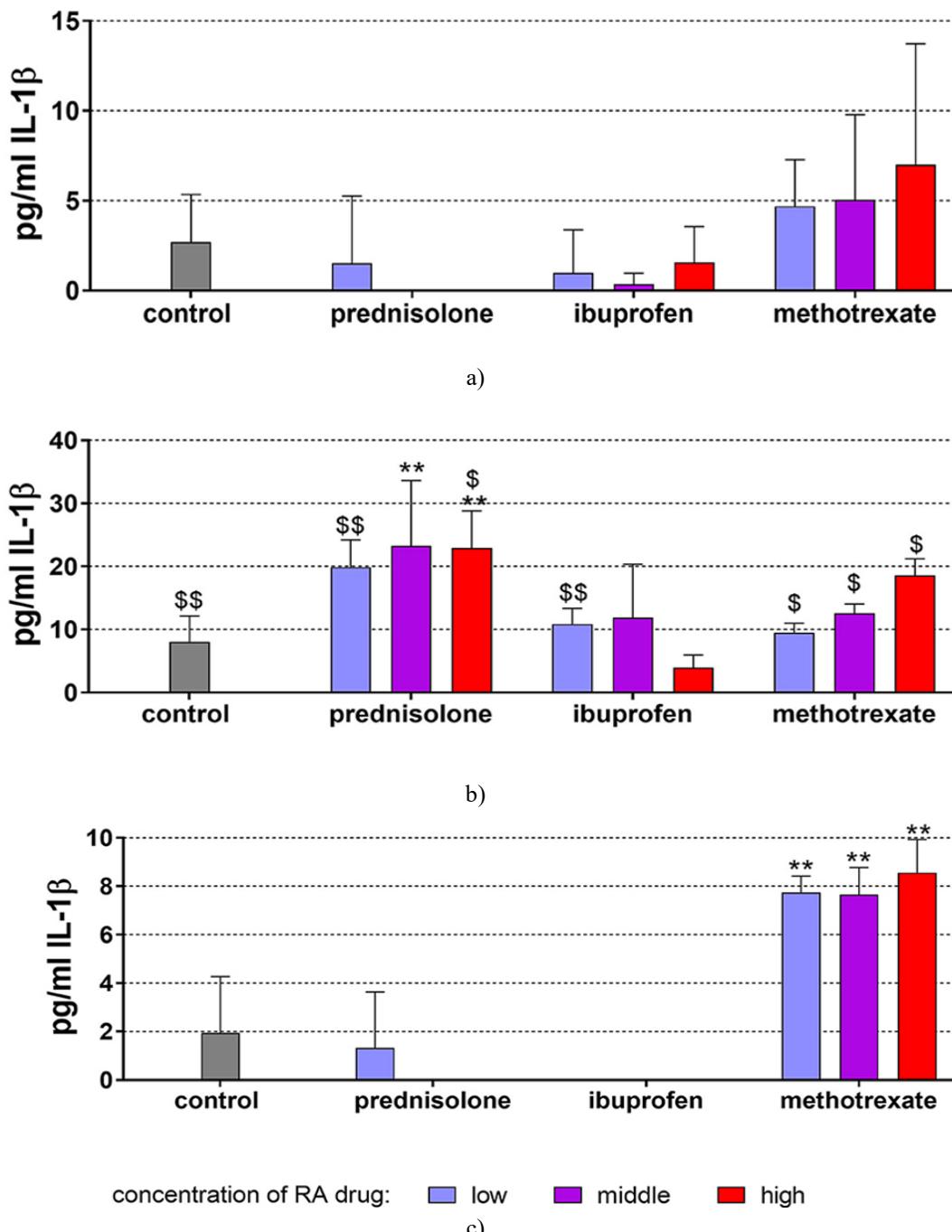
Statistical analyses were performed using SPSS version 24.0 (IBM, Armonk, NY, USA). One-way ANOVA followed by Bonferroni post-hoc tests was applied to assess differences between groups. Prior to analysis, the normality of the data was confirmed through evaluation of skewness and kurtosis. Post-hoc comparisons were limited to the effects of each drug versus the corresponding microbial control or, at specified drug concentrations, versus cells cultured without microbes. A p-value of less than 0.05 was considered statistically significant.

Results and Discussion

MONO-MAC-6 cells

In the absence of any stimulation, the cells released an average of 42.47 ± 24.29 pg/ml of IL-8 after 18 hours of incubation. Treatment with prednisolone or ibuprofen at the tested concentrations did not significantly alter IL-8 secretion. In contrast, exposure to methotrexate at 1, 5, and 25 μ g/ml resulted in significantly elevated IL-8 levels compared to the control ($p = 0.001$, $p = 0.020$, and $p < 0.001$, respectively; **Figure 1a**).

Figure 1. IL-8 production by MONO-MAC-6 cells after 18 hours of treatment with prednisolone (low: 20 ng/ml, medium: 100 ng/ml, high: 500 ng/ml), ibuprofen (low: 2 μ g/ml, medium: 10 μ g/ml, high: 50 μ g/ml), and methotrexate (low: 1 μ g/ml, medium: 5 μ g/ml, high: 25 μ g/ml) under three experimental conditions: (a) without microbial stimuli, (b) following stimulation with *Fusobacterium nucleatum* lysate, and (c) after exposure to *Candida albicans* lysate. Bars indicate standard deviations, and columns represent mean values. Statistical significance: * $p < 0.05$ vs. control, ** $p < 0.01$ vs. control, §§ $p < 0.01$ vs. the respective group without microbial stimulation.


Stimulation with *F. nucleatum* lysate induced a strong increase in IL-8 secretion, reaching 862.73 ± 209.00 pg/ml ($p < 0.001$). When anti-rheumatic drugs were added, IL-8 levels remained higher than in non-stimulated controls. In comparison to cells exposed to *F. nucleatum* alone, ibuprofen did not significantly alter cytokine release. Prednisolone further amplified

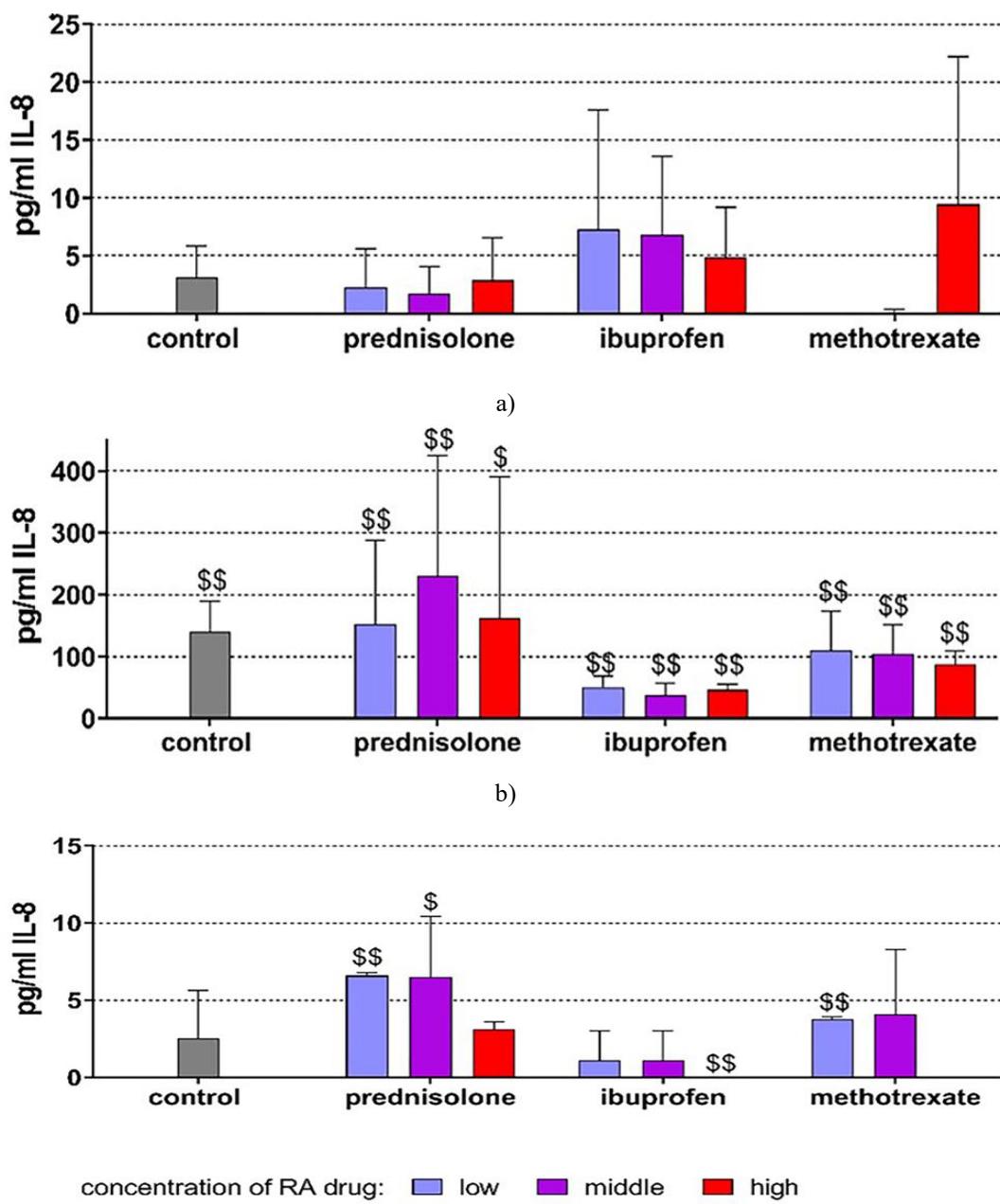
IL-8 production, with the highest concentration (500 ng/ml) yielding $2,201.46 \pm 70.60$ pg/ml ($p < 0.001$). Methotrexate, on the other hand, attenuated IL-8 secretion relative to the bacterial lysate alone, but levels still exceeded those in cells not exposed to *F. nucleatum* (Figure 1b).

In contrast, stimulation with *C. albicans* lysate did not significantly affect IL-8 release (73.23 ± 60.53 pg/ml). Methotrexate significantly increased IL-8 secretion across all tested doses ($p < 0.001$), and at 5 μ g/ml, IL-8 levels were higher in the presence of *C. albicans* than

in cells cultured without microbial stimulation ($p = 0.006$; **Figure 1c**).

For IL-1 β , unstimulated MONO-MAC-6 cells released low amounts, averaging 2.70 ± 2.65 pg/ml after 18 hours. None of the drug treatments significantly altered these basal levels (**Figure 2a**).

Figure 2. IL-1 β secretion by MONO-MAC-6 cells following 18 hours of treatment with prednisolone (low: 20 ng/ml, medium: 100 ng/ml, high: 500 ng/ml), ibuprofen (low: 2 μ g/ml, medium: 10 μ g/ml, high: 50 μ g/ml), and methotrexate (low: 1 μ g/ml, medium: 5 μ g/ml, high: 25 μ g/ml) under three conditions: (a) without microbial stimuli, (b) with *Fusobacterium nucleatum* lysate, and (c) with *Candida albicans* lysate. Mean values are represented by columns and standard deviations by error bars. Statistical significance: * $p < 0.05$ vs. control, ** $p < 0.01$ vs. control, \$\$p < 0.05/p < 0.01 vs. the corresponding group without microbial components.


Stimulation with *F. nucleatum* lysate significantly elevated IL-1 β secretion to 8.06 ± 4.10 pg/ml compared with unstimulated cells ($p < 0.001$; **Figure 2b**). When anti-rheumatic drugs were present, IL-1 β levels remained higher than in cells without microbial exposure. Specifically, prednisolone at 100 and 500 ng/ml further increased IL-1 β release ($p = 0.004$ and $p = 0.006$, respectively).

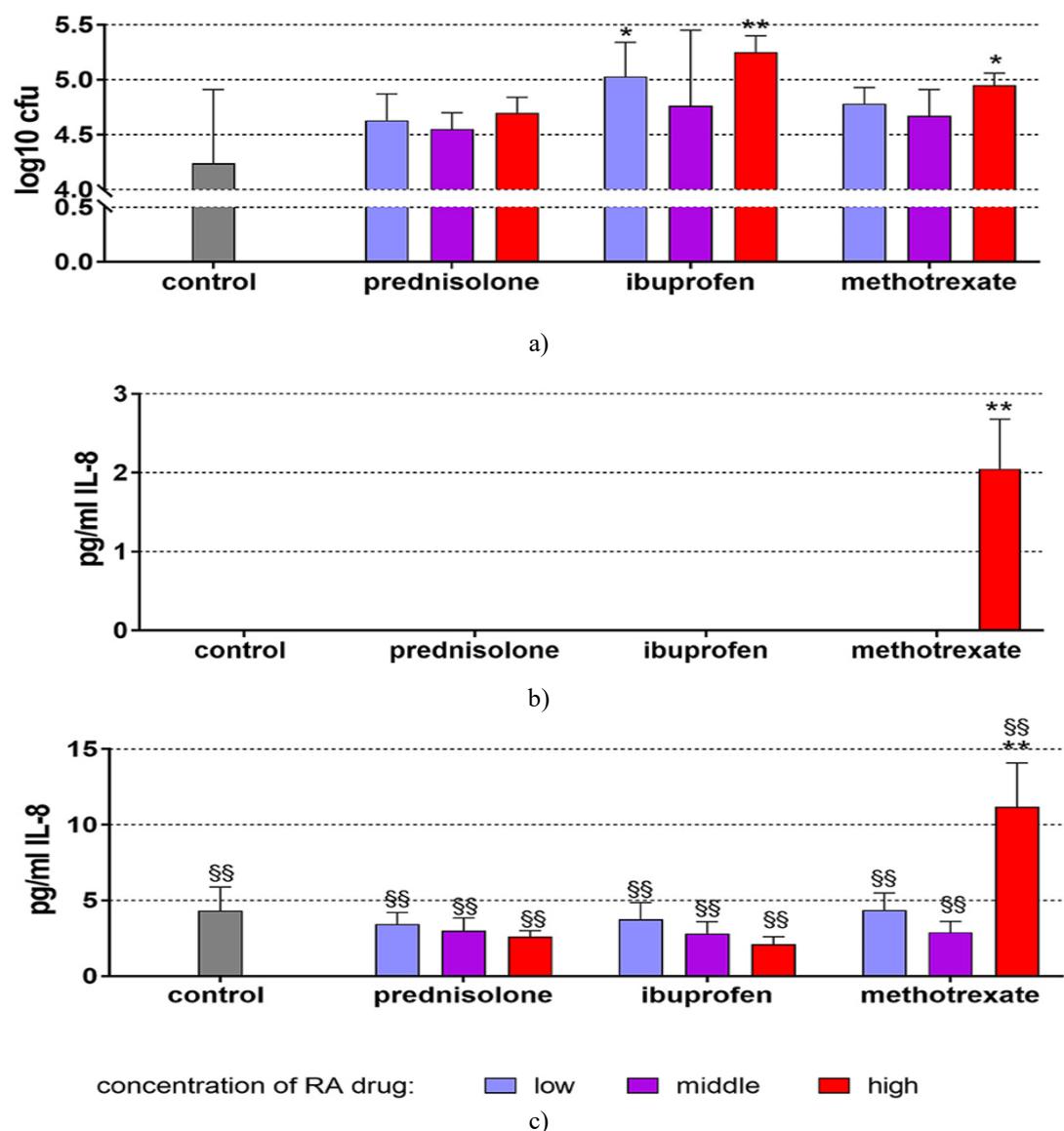
In contrast, *C. albicans* lysate did not significantly affect IL-1 β secretion. However, methotrexate

significantly enhanced IL-1 β release at all tested concentrations ($p < 0.001$ for each dose; **Figure 2c**).

PDL fibroblasts

In the absence of any stimulation, the cells produced an average of 3.17 ± 2.66 pg/ml of IL-8 after 18 hours of incubation. Treatment with the tested drugs did not result in a statistically significant change in IL-8 secretion (**Figure 3a**).

Figure 3. IL-8 secretion by PDL fibroblasts following 18 hours of treatment with prednisolone (low: 20 ng/ml, medium: 100 ng/ml, high: 500 ng/ml), ibuprofen (low: 2 μ g/ml, medium: 10 μ g/ml, high: 50 μ g/ml), and methotrexate (low: 1 μ g/ml, medium: 5 μ g/ml, high: 25 μ g/ml) under three conditions: (a) without microbial components, (b) after stimulation with *Fusobacterium nucleatum* lysate, and (c) after exposure to


Candida albicans lysate. Columns indicate mean values, and error bars represent standard deviations.

Statistical significance: $^{/\$\$}p < 0.05/p < 0.01$ vs. the respective group without microbial stimulation.

Stimulation with *F. nucleatum* lysate significantly increased IL-8 release to 140.33 ± 49.18 pg/ml ($p < 0.001$). Elevated IL-8 levels compared with non-stimulated controls were also observed in the presence of the tested drugs (Figure 3b). In contrast, exposure to *C. albicans* lysate did not significantly affect IL-8 secretion (2.52 ± 3.14 pg/ml). Nevertheless, low doses of prednisolone ($p = 0.003$) and methotrexate ($p = 0.001$) caused a significant increase in IL-8, while high-dose ibuprofen (50 μ g/ml) led to a reduction compared with cells without microbial stimulation ($p = 0.002$; Figure 3c).

TIGK cells

In this set of experiments, whole *C. albicans* cells rather than lysates were applied to TIGK cells. On average, 4.42 ± 0.67 \log_{10} fungal cells adhered per well. The presence of anti-rheumatic drugs consistently increased fungal adherence, ranging from $0.31 \log_{10}$ (100 ng/ml prednisolone) to $1.01 \log_{10}$ (50 μ g/ml ibuprofen). These increases reached statistical significance for ibuprofen at 2 μ g/ml and 50 μ g/ml ($p = 0.013$ and $p < 0.001$, respectively) and for methotrexate at 25 μ g/ml ($p = 0.048$; Figure 4a).

Figure 4. (a) Adherence (including invasion) of *Candida albicans* to TIGK cells and (b, c) IL-8 release by TIGK cells following 6 hours of treatment with prednisolone (20, 100, 500 ng/ml), ibuprofen (2, 10, 50 μ g/ml), and methotrexate (1, 5, 25 μ g/ml) under different conditions: (B) without microbial stimulus and (C) in the presence of *C. albicans*. Mean values are shown as columns, with standard deviations indicated by

error bars. Statistical significance: */*/*p < 0.05/p < 0.01 vs. control, \$/\$\$p < 0.05/p < 0.01 vs. the corresponding group without microbial stimulation.

In the absence of microbial cells, IL-8 secretion was minimal and only detectable following treatment with 25 μ g/ml methotrexate after 6 hours of incubation (**Figure 4b**). Exposure to *C. albicans* led to increased IL-8 production regardless of the presence of anti-rheumatic drugs (**Figure 4c**). Notably, IL-8 levels were further elevated when 25 μ g/ml methotrexate was added compared with *C. albicans* alone (p < 0.001).

In this study, we investigated how anti-rheumatic drugs, with or without microbial stimulation, affect oral cells. Among the microbial stimuli, *Fusobacterium nucleatum* lysate elicited the strongest pro-inflammatory cytokine release from PDL fibroblasts and monocytic cells, whereas the effects of the tested anti-rheumatic drugs were generally minor.

Porphyromonas gingivalis has been suggested as a key link between periodontitis and rheumatoid arthritis (RA) [26]. This pathogen expresses peptidyl-arginine deiminase, which can citrullinate both host and bacterial proteins [27]. Outer membrane vesicles from *P. gingivalis* may contain up to 50 citrullinated proteins [28]. In preliminary experiments using *P. gingivalis* ATCC 33277 lysate, IL-8 was undetectable in PDL fibroblast supernatants, both with and without anti-rheumatic drugs, likely due to active gingipains that degrade IL-8 [29]. Consequently, subsequent experiments employed *F. nucleatum*, which is enriched in gingivitis and periodontitis compared with periodontal health [30, 31] and is a potent inducer of cytokine production in gingival fibroblasts [32]. This study confirmed these findings, particularly for PDL fibroblasts and MONO-MAC-6 monocytic cells.

In PDL fibroblasts, a non-professional immune cell type, exposure to *F. nucleatum* in the absence of drugs increased IL-8 release, though to a lesser extent than in MONO-MAC-6 cells. *Candida albicans* did not significantly alter IL-8 secretion, which may be attributable to the use of blastospores rather than germinated forms, as previous studies showed that germinated *C. albicans* rather than blastospores stimulate IL-8 in gingival fibroblasts [33]. MONO-MAC-6 cells, representing professional immune cells, produced high levels of IL-8 and IL-1 β , particularly following *F. nucleatum* stimulation, but remained unresponsive to *C. albicans*. The method used for *C. albicans* preparation likely contained cell wall components such as β -glucans, which, together with LPS, are known to induce IL-10 without affecting pro-inflammatory cytokines in monocytes [34]. This may explain the limited influence of *C. albicans* on pro-

inflammatory cytokine release. Similarly, *Candida* biofilm supernatants do not alter IL-8 mRNA or protein in blood cells, unless combined with mixed bacterial species, which can dramatically enhance IL-8 expression and secretion [35]. A limitation of the current study is that stimulation with multi-species lysates was not performed.

MONO-MAC-6 cells produced high IL-1 β levels in response to *F. nucleatum* lysate, whereas *C. albicans* had no effect. Glucocorticoids, commonly used in RA therapy, reduce inflammatory cell infiltration and lower levels of TNF α , IL-1 β , IL-6, and IL-17 [36]. Clinically, prednisolone decreases IL-8 expression in RA synovium but does not alter IL-1 β levels [37, 38]. Consistently, in this in vitro study, prednisolone alone did not significantly affect cytokine release, though it enhanced IL-8 and modestly IL-1 β release when combined with *F. nucleatum* in MONO-MAC-6 cells. Ibuprofen had no detectable effect on IL-8 or IL-1 β release, which contrasts with studies in bovine fibroblast-like synoviocytes showing decreased IL-1 β following LPS stimulation [39]. Clinically, ibuprofen did not affect IL-1 β levels in gingival crevicular fluid during orthodontic treatment [40], and short-term adjunctive use in periodontitis modestly reduced clinical inflammation [41].

Methotrexate, which acts on folate pathways, adenosine, leukotrienes, and cytokines, is used not only in RA but also in chronic sarcoidosis [42]. In RA, it reduces neutrophil counts [43]. Methotrexate has been reported to increase IL-1 expression and secretion in U937 monocytic cells via JUN and FOS activation [44]. In our study, methotrexate increased cytokine release in the absence of microbial stimulation, but levels were reduced when cells were exposed to *F. nucleatum*, suggesting that bacterial-induced inflammation may be dampened. Clinically, methotrexate alone or with anti-TNF therapy lowers systemic inflammation in RA but does not significantly impact periodontal inflammation as measured by PISA [45]. The severity of periodontitis in RA patients appears to be influenced by the type of RA medication: patients treated with methotrexate combined with rituximab or leflunomide had fewer bleeding sites than those receiving methotrexate plus TNF α inhibitors [46]. Among DMARDs, only methotrexate demonstrated antimicrobial activity against oral pathogens, including *F. nucleatum* and *Viridans streptococci* [47].

Studies report conflicting findings regarding IL-1 β levels in gingival crevicular fluid (GCF) of RA patients with periodontitis, with some showing higher levels [16, 48], others lower [49], and some no difference [50]. Anti-TNF therapy decreased IL-1 β and IL-8 levels in GCF [51], and salivary IL-1 β levels were lower in RA patients receiving anti-TNF therapy compared with other DMARDs [52].

In our prior microbiota analyses, yeasts were frequently detected in RA patients' subgingival biofilm but not in periodontitis patients without RA [20]. Accordingly, *C. albicans* was included in this study. Methotrexate and ibuprofen increased its adhesion to gingival epithelial cells, though the underlying mechanism remains unclear. In *C. albicans*, Als3 mediates adhesion to E-cadherin and host cell endocytosis [53].

This study has several limitations. Only isolated cell types were examined, whereas *in vivo* immune responses involve complex interactions. The model used *F. nucleatum* lysate rather than a multi-species biofilm, and cytokine measurements were performed at a single time point. Finally, lysates were used instead of live bacteria.

Conclusion

In summary, bacterial stimuli were the primary drivers of pro-inflammatory cytokine release from professional and non-professional immune cells. Among the anti-inflammatory drugs tested, prednisolone and methotrexate modulated the interaction between microorganisms and monocytic cells: prednisolone enhanced IL-8 release following *F. nucleatum* stimulation, whereas methotrexate reduced it. Both methotrexate and ibuprofen increased *C. albicans* adhesion to epithelial cells. Clinically, in RA patients, reducing subgingival microbial load is crucial to control inflammation, although anti-rheumatic drugs may alter typical periodontal signs.

Acknowledgments: The excellent technical support by Fabiola Costanzo (Dept. of Periodontology, University of Bern) is highly appreciated.

Conflict of Interest: None

Financial Support: The study was entirely funded by the Department of Periodontology, University of Bern, Bern, Switzerland. Open access funding was provided by the University of Bern.

Ethics Statement: Written informed consent was obtained from all participants for their participation in this study.

References

1. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. *J Dent Res.* (2014) 93:1045–53. 10.1177/0022034514552491 [DOI] [PMC free article] [PubMed] [Google Scholar]
2. Van Dyke TE, Bartold PM, Reynolds EC. The nexus between periodontal inflammation and dysbiosis. *Front Immunol.* (2020) 11:511. 10.3389/fimmu.2020.00511 [DOI] [PMC free article] [PubMed] [Google Scholar]
3. Llama-Palacios A, Potupa O, Sanchez MC, Figuero E, Herrera D, Sanz M. Proteomic analysis of *Fusobacterium nucleatum* growth in biofilm versus planktonic state. *Mol Oral Microbiol.* (2020) 35:168–80. 10.1111/omi.12303 [DOI] [PubMed] [Google Scholar]
4. Marchesan JT, Girnary MS, Moss K, Monaghan ET, Egnatz GJ, Jiao Y, et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. *Periodontol.* (2020) 82:93–114. 10.1111/prd.12269 [DOI] [PMC free article] [PubMed] [Google Scholar]
5. Palomino DC, Marti LC. Chemokines and immunity. *Einstein.* (2015) 13:469–73. 10.1590/S1679-45082015RB3438 [DOI] [PMC free article] [PubMed] [Google Scholar]
6. Finoti LS, Nepomuceno R, Pigossi SC, Corbi SC, Secolin R, Scarel-Caminaga RM. Association between interleukin-8 levels and chronic periodontal disease: a PRISMA-compliant systematic review and meta-analysis. *Medicine.* (2017) 96:e6932. 10.1097/MD.0000000000006932 [DOI] [PMC free article] [PubMed] [Google Scholar]
7. Grossi SG, Zambon JJ, Ho AW, Koch G, Dunford RG, Machtei EE, et al. Assessment of risk for periodontal disease. I Risk indicators for attachment loss. *J Periodontol.* (1994) 65:260–7. 10.1902/jop.1994.65.3.260 [DOI] [PubMed] [Google Scholar]
8. Lee KH, Choi YY. Rheumatoid arthritis and periodontitis in adults: using the Korean National Health Insurance Service-National Sample Cohort. *J Periodontol.* (2020) 91:1186–93. 10.1002/JPER.19-0311 [DOI] [PubMed] [Google Scholar]

9. Sparks J. A. (2019). Rheumatoid arthritis. *Ann. Intern. Med.* 170:ITC1–16. 10.7326/AITC201901010 [DOI] [PubMed] [Google Scholar]
10. An Q, Yan W, Zhao Y, Yu K. Enhanced neutrophil autophagy and increased concentrations of IL-6, IL-8, IL-10 and MCP-1 in rheumatoid arthritis. *Int Immunopharmacol.* (2018) 65:119–28. 10.1016/j.intimp.2018.09.011 [DOI] [PubMed] [Google Scholar]
11. Dai Y, Hu S. Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis. *Rheumatology.* (2016) 55:403–10. 10.1093/rheumatology/kev337 [DOI] [PubMed] [Google Scholar]
12. Dayer JM. The saga of the discovery of IL-1 and TNF and their specific inhibitors in the pathogenesis and treatment of rheumatoid arthritis. *Joint Bone Spine.* (2002) 69:123–32. 10.1016/S1297-319X(02)00363-9 [DOI] [PubMed] [Google Scholar]
13. Akram M, Daniyal M, Sultana S, Owais A, Akhtar N, Zahid R, et al. Traditional and modern management strategies for rheumatoid arthritis. *Clin Chim Acta.* (2021) 512:142–55. 10.1016/j.cca.2020.11.003 [DOI] [PubMed] [Google Scholar]
14. Keysser G. Safety aspects of the treatment with glucocorticoids for rheumatoid arthritis. *Z Rheumatol.* (2021) 80:295–304. 10.1007/s00393-021-00972-x [DOI] [PMC free article] [PubMed] [Google Scholar]
15. Bender P, Burgin WB, Sculean A, Eick S. Serum antibody levels against *Porphyromonas gingivalis* in patients with and without rheumatoid arthritis - a systematic review and meta-analysis. *Clin Oral Investig.* (2017) 21:33–42. 10.1007/s00784-016-1938-5 [DOI] [PubMed] [Google Scholar]
16. Bender P, Egger A, Westermann M, Taudte N, Sculean A, Potempa J, et al. Expression of human and *Porphyromonas gingivalis* glutaminyl cyclases in periodontitis and rheumatoid arthritis- A pilot study. *Arch Oral Biol.* (2019) 97:223–30. 10.1016/j.archoralbio.2018.10.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
17. Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. *Periodontol.* (2021) 86:57–78. 10.1111/prd.12362 [DOI] [PubMed] [Google Scholar]
18. Ebbers M, Lubcke PM, Volzke J, Kriebel K, Hieke C, Engelmann R, et al. Interplay between *P. gingivalis*, *F. nucleatum* and *A. actinomycetemcomitans* in murine alveolar bone loss, arthritis onset and progression. *Sci Rep.* (2018) 8:15129. 10.1038/s41598-018-33129-z [DOI] [PMC free article] [PubMed] [Google Scholar]
19. Temoin S, Chakaki A, Askari A, El-Halaby A, Fitzgerald S, Marcus RE, et al. Identification of oral bacterial DNA in synovial fluid of patients with arthritis with native and failed prosthetic joints. *J Clin Rheumatol.* (2012) 18:117–21. 10.1097/RHU.0b013e3182500c95 [DOI] [PMC free article] [PubMed] [Google Scholar]
20. Maldonado A, Pirracchio L, Imber JC, Burgin W, Moller B, Sculean A, et al. Citrullination in periodontium is associated with *Porphyromonas gingivalis*. *Arch Oral Biol.* (2020) 114:104695. 10.1016/j.archoralbio.2020.104695 [DOI] [PubMed] [Google Scholar]
21. Laugisch O, Wong A, Sroka A, Kanyka T, Koziel J, Neuhaus K, et al. Citrullination in the periodontium—a possible link between periodontitis and rheumatoid arthritis. *Clin Oral Investig.* (2016) 20:675–83. 10.1007/s00784-015-1556-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
22. Eick S, Goltz S, Nietzsche S, Jentsch H, Pfister W. Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. *Quintessence Int.* (2011) 42:687–700. [PubMed] [Google Scholar]
23. Bischoff KB. Physiologically based pharmacokinetic modelling. In: *Drinking Water and Health*, Vol. 8. *Pharmacokinetics in Risk Assessment* (Washington, D.C.: National Academy of Science;) (1987). [Google Scholar]
24. Rainsford KD. Ibuprofen: pharmacology, efficacy and safety. *Inflammopharmacology.* (2009) 17:275–342. 10.1007/s10787-009-0016-x [DOI] [PubMed] [Google Scholar]
25. Magee MH, Blum RA, Lates CD, Jusko WJ. Prednisolone pharmacokinetics and pharmacodynamics in relation to sex and race. *J Clin Pharmacol.* (2001) 41:1180–94. 10.1177/00912700122012733 [DOI] [PMC free article] [PubMed] [Google Scholar]
26. Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. *Nat Rev Rheumatol.* (2017) 13:606–20. 10.1038/nrrheum.2017.132 [DOI] [PubMed] [Google Scholar]
27. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, et al. Peptidylarginine deiminase

from *Porphyromonas gingivalis* citrullinates human fibrinogen and α -enolase: implications for autoimmunity in rheumatoid arthritis. *Arthritis Rheum.* (2010) 62:2662–72. 10.1002/art.27552 [DOI] [PMC free article] [PubMed] [Google Scholar]

28. Larsen DN, Mikkelsen CE, Kierkegaard M, Bereta GP, Nowakowska Z, Kaczmarek JZ, et al. Citrullinome of *porphyromonas gingivalis* outer membrane vesicles: confident identification of citrullinated peptides. *Mol Cell Proteomics.* (2020) 19:167–80. 10.1074/mcp.RA119.001700 [DOI] [PMC free article] [PubMed] [Google Scholar]

29. Mikolajczyk-Pawlinska J, Travis J, Potempa J. Modulation of interleukin-8 activity by gingipains from *Porphyromonas gingivalis*: implications for pathogenicity of periodontal disease. *FEBS Lett.* (1998) 440:282–6. 10.1016/S0014-5793(98)01461-6 [DOI] [PubMed] [Google Scholar]

30. Nowicki EM, Shroff R, Singleton JA, Renaud DE, Wallace D, Drury J, et al. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. *MBio.* (2018) 9: e00518–75. 10.1128/mBio.00575-18 [DOI] [PMC free article] [PubMed] [Google Scholar]

31. López-Martínez J, Chueca N, Padial-Molina M, Fernandez-Caballero JA, García F, O'valle F, et al. Bacteria associated with periodontal disease are also increased in health. *Med Oral Patol Oral Cir Bucal.* (2020) 25:e745–51. 10.4317/medoral.23766 [DOI] [PMC free article] [PubMed] [Google Scholar]

32. Jang JY, Song IS, Baek KJ, Choi Y, Ji S. Immunologic characteristics of human gingival fibroblasts in response to oral bacteria. *J Periodontal Res.* (2017) 52:447–57. 10.1111/jre.12410 [DOI] [PubMed] [Google Scholar]

33. Dongari-Bagtzoglou A, Wen K, Lamster IB. *Candida albicans* triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro. *Oral Microbiol Immunol.* (1999) 14:364–70. 10.1034/j.1399-302X.1999.140606.x [DOI] [PubMed] [Google Scholar]

34. Leonhardt J, Gross S, Marx C, Siwczak F, Stengel S, Bruns T, et al. *Candida albicans* β -glucan differentiates human monocytes into a specific subset of macrophages. *Front Immunol.* (2018) 9:2818. 10.3389/fimmu.2018.02818 [DOI] [PMC free article] [PubMed] [Google Scholar]

35. Bhardwaj RG, Ellepolla A, Drobiova H, Karched M. Biofilm growth and IL-8 & TNF-alpha-inducing properties of *Candida albicans* in the presence of oral gram-positive and gram-negative bacteria. *BMC Microbiol.* (2020) 20:156. 10.1186/s12866-020-01834-3 [DOI] [PMC free article] [PubMed] [Google Scholar]

36. Ferreira JF, Ahmed Mohamed AA, Emery P. Glucocorticoids and rheumatoid arthritis. *Rheum Dis Clin North Am.* (2016) 42: 33–46, vii. 10.1016/j.rdc.2015.08.006 [DOI] [PubMed] [Google Scholar]

37. Youssef PP, Haynes DR, Triantafillou S, Parker A, Gamble JR, Roberts-Thomson PJ, et al. Effects of pulse methylprednisolone on inflammatory mediators in peripheral blood, synovial fluid, and synovial membrane in rheumatoid arthritis. *Arthritis Rheum.* (1997) 40:1400–8. 10.1002/art.1780400807 [DOI] [PubMed] [Google Scholar]

38. Gerlag DM, Boyle DL, Rosengren S, Nash T, Tak PP, Firestein GS. Real-time quantitative PCR to detect changes in synovial gene expression in rheumatoid arthritis after corticosteroid treatment. *Ann Rheum Dis.* (2007) 66:545–7. 10.1136/ard.2006.059790 [DOI] [PMC free article] [PubMed] [Google Scholar]

39. Maghsoudi H, Hallajzadeh J, Rezaei-pour M. Evaluation of the effect of polyphenol of escin compared with ibuprofen and dexamethasone in synoviocyte model for osteoarthritis: an in vitro study. *Clin Rheumatol.* (2018) 37:2471–8. 10.1007/s10067-018-4097-z [DOI] [PubMed] [Google Scholar]

40. Kaya Y, Alkan Ö, Kömüroglu AU, Keskin S. Effects of ibuprofen and low-level laser therapy on orthodontic pain by means of the analysis of interleukin 1-beta and substance P levels in the gingival crevicular fluid. *J Orofac Orthop.* (2021) 82:143–52. 10.1007/s00056-020-00254-2 [DOI] [PubMed] [Google Scholar]

41. Taiyeb Ali TB, Waite IM. The effect of systemic ibuprofen on gingival inflammation in humans. *J Clin Periodontol.* (1993) 20:723–8. 10.1111/j.1600-051X.1993.tb00697.x [DOI] [PubMed] [Google Scholar]

42. Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, Cvejic J, Mooradian A, Al-Salami H, et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. *Mol Biol Rep.* (2020) 47:4699–708. 10.1007/s11033-020-05481-9 [DOI] [PubMed] [Google Scholar]

43. Perpétuo IP, Caetano-Lopes J, Rodrigues AM, Campanilho-Marques R, Ponte C, Canhão H, et al. Methotrexate and low-dose prednisolone downregulate osteoclast function by decreasing receptor activator of nuclear factor- κ β expression in monocytes from patients with early rheumatoid arthritis. *RMD Open.* (2017) 3:e000365. 10.1136/rmdopen-2016-000365 [DOI] [PMC free article] [PubMed] [Google Scholar]

44. Olsen NJ, Spurlock CF 3rd, Aune TM. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. *Arthritis Res Ther.* (2014) 16, R17. 10.1186/ar4444 [DOI] [PMC free article] [PubMed] [Google Scholar]

45. De Smit MJ, Westra J, Posthumus MD, Springer G, Van Winkelhoff AJ, Vissink A, et al. Effect of anti-rheumatic treatment on the periodontal condition of rheumatoid arthritis patients. *Int J Environ Res Public Health.* (2021) 18:2529. 10.3390/ijerph18052529 [DOI] [PMC free article] [PubMed] [Google Scholar]

46. Ziebolz D, Rupprecht A, Schmickler J, Bothmann L, Krämer J, Patschan D, et al. Association of different immunosuppressive medications with periodontal condition in patients with rheumatoid arthritis: Results from a cross-sectional study. *J Periodontol.* (2018) 89:1310–7. 10.1002/JPER.17-0616 [DOI] [PubMed] [Google Scholar]

47. Kussmann M, Obermueller M, Spettel K, Winkler S, Aletaha D. In vitro evaluation of disease-modifying antirheumatic drugs against rheumatoid arthritis associated pathogens of the oral microflora. *RMD Open.* (2021) 7:e001737. 10.1136/rmdopen-2021-001737 [DOI] [PMC free article] [PubMed] [Google Scholar]

48. Xiao F, Li C, Lin Y, Peng Z, Xu X, Wen Y, et al. Increased risk of periodontitis occurrence in patients with rheumatoid arthritis and its association with the levels of IL-1 β and TNF- α in gingival crevicular fluid. *Ann Palliat Med.* (2021) 10:9078–87. 10.21037/apm-21-1782 [DOI] [PubMed] [Google Scholar]

49. Miranda LA, Islabão AG, Fischer RG, Figueiredo CM, Oppermann RV, Gustafsson A. Decreased interleukin-1beta and elastase in the gingival crevicular fluid of individuals undergoing anti-inflammatory treatment for rheumatoid arthritis. *J Periodontol.* (2007) 78:1612–9. 10.1902/jop.2007.060520 [DOI] [PubMed] [Google Scholar]

50. Cetinkaya B, Guzeldemir E, Oğus E, Bulut S. Proinflammatory and anti-inflammatory cytokines in gingival crevicular fluid and serum of patients with rheumatoid arthritis and patients with chronic periodontitis. *J Periodontol.* (2013) 84:84–93. 10.1902/jop.2012.110467 [DOI] [PubMed] [Google Scholar]

51. Üstün K, Erciyas K, Kisacik B, Sezer U, Pehlivan Y, Öztuzcu S, et al. Host modulation in rheumatoid arthritis patients with TNF blockers significantly decreases biochemical parameters in periodontitis. *Inflammation.* (2013) 36:1171–7. 10.1007/s10753-013-9652-9 [DOI] [PubMed] [Google Scholar]

52. Mirrieles J, Crofford LJ, Lin Y, Kryscio RJ, Dawson DR, 3rd, Ebersole JL, Miller CS. Rheumatoid arthritis and salivary biomarkers of periodontal disease. *J Clin Periodontol.* (2010) 37:1068–74. 10.1111/j.1600-051X.2010.01625.x [DOI] [PMC free article] [PubMed] [Google Scholar]

53. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a *Candida albicans* invasin that binds to cadherins and induces endocytosis by host cells. *PLoS Biol.* (2007) 5:e64. 10.1371/journal.pbio.0050064 [DOI] [PMC free article] [PubMed] [Google Scholar]