International Journal of Dental Research and Allied Sciences

2025, Volume 5, Issue 1, Page No: 21-34 Copyright CC BY-NC-SA 4.0

Available online at: www.tsdp.net

Original Article

Simone Marconcini^{1,2}, Angelo Russo^{1,2}, Enrica Giammarinaro^{2*}

- ¹ Department of Prevention, Local Health Authority of Messina, 98123 Messina, Italy.
- ² Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98124 Messina, Italy.

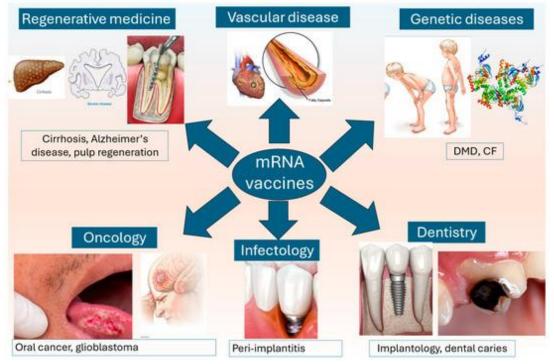
*E-mail Enrica.giammarinaro@hotmail.com

01 December 2024; Revised: 19 February 2025; Accepted:19 February 2025

ABSTRACT

The rapid progress in mRNA vaccine technology, accelerated by the global COVID-19 crisis, has sparked growing interest in their use for conditions beyond infectious diseases. Dentistry has become an emerging area for exploring mRNA-based therapeutic approaches aimed at preventing and managing oral pathologies. This narrative review assesses the present landscape of mRNA vaccine research and its experimental use in oral health, particularly in relation to periodontal disorders, dental caries, regenerative strategies, implantology, and oral malignancies. Evidence was gathered from preclinical investigations—both in vitro and in animal models—to evaluate the capacity of mRNA-based interventions to influence immune mechanisms and promote repair within oral tissues. Clinical investigations were referenced only when relevant to broader applications of mRNA vaccines, such as in oncology and immune-based therapies. Preclinical evidence demonstrates that mRNA formulations can strengthen immune responses and support tissue-healing mechanisms. Nonetheless, their successful delivery in the intricate oral microenvironment remains a major obstacle. Issues such as maintaining vaccine integrity, optimizing delivery systems, and fine-tuning immune modulation still need to be addressed. Although mRNA vaccines show considerable promise for transforming dental therapeutics, substantial barriers concerning safety, efficacy, and clinical practicality persist. Continued research is crucial to overcome these limitations and facilitate their safe and effective integration into dental practice.

Keywords: mRNA vaccines, Oral health, Dentistry, Periodontal disease, Dental caries, Immune modulation, Regenerative medicine, Implantology


How to Cite This Article: Marconcini S, Russo A, Giammarinaro E. Advancing Oral Health: Preclinical Findings and Future Prospects of mRNA Vaccines in Dental Applications—A Comprehensive Review. Int J Dent Res Allied Sci. 2025;5(1):21-34. https://doi.org/10.51847/aJgF3ZdkQZ

Introduction

The remarkable success of mRNA vaccines during the COVID-19 pandemic has confirmed their powerful biological potential [1]. Yet, their relevance extends far beyond infectious disease control and epidemiology [2]. These vaccines influence the complex immune pathways involved in various diseases, demonstrating anti-inflammatory, immunomodulatory, antitumor, and regenerative functions [3-5] (Figure 1). Despite these advances, their role in dentistry is still emerging [6]. Investigations have mainly explored how mRNA-

based approaches might address frequent dental problems, including periodontal inflammation [7], implant integration [8], dental decay [9], and oral neoplasms [10]. However, much remains unknown about how these vaccines can be tailored to the specialized conditions within the oral cavity [11]. Major challenges include managing microbial ecosystems, reducing potential immune-related side effects, ensuring long-term biosafety, and tackling factors that influence accessibility. economic Moreover, refining delivery strategies and improving local immune modulation for effective regeneration are vital [12]. This review critically examines preclinical research on mRNA vaccines within the context of dentistry to evaluate their transformative potential for oral health care [13]. By compiling and analyzing current findings, the study identifies existing gaps and suggests directions for future inquiry [14]. Ultimately,

the goal is to advance mRNA vaccines as viable therapeutic tools in dental medicine, addressing both opportunities and obstacles in this innovative field [15].

Figure 1. Potential applications of mRNA vaccines across medical disciplines due to their anti-inflammatory, immunomodulatory, antitumor, and regenerative properties

Basic Principles

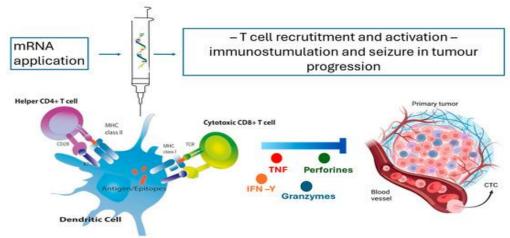
mRNA vaccines in Dentistry: Overview and potential The development, manufacturing, and biomedical application of mRNA vaccines are progressing at an exceptional rate, driven by encouraging data from numerous preclinical investigations spanning multiple medical domains [16-19]. mRNA therapeutics are increasingly recognized as versatile candidates for conditions imposing significant health and financial burdens, including cancer, heart failure, autoimmune disorders [20], and rare hereditary diseases [21]. Their appeal lies in their adaptability, cost-effectiveness, and relatively simple production, alongside fewer complications during administration [22]. Delivery typically involves nanoparticle carriers that safeguard the mRNA from degradation and facilitate its entry into the cytoplasm. Since translation occurs exclusively in the cytoplasm, there is no risk of genomic integration, and the absence of viral vectors minimizes the chance of insertional mutagenesis or autoimmune events [23]. these technological breakthroughs promising, dental applications of mRNA vaccines remain at an early stage yet hold substantial potential [24]. This technology provides a novel opportunity to tackle oral conditions such as periodontal disease, dental caries, and oral cancers—ailments that have historically posed treatment difficulties [25]. A distinct advantage of mRNA vaccines lies in their dual capability to modulate immune activity and stimulate tissue renewal [26]. For example, in oral lichen planus (OLP), mRNA constructs encoding immunoregulatory cytokines like interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) could help control T-cell—mediated responses, thereby reducing inflammation. Meanwhile, mRNA encoding growth-promoting factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF) could enhance cell proliferation and repair processes within damaged oral mucosa [27].

Obstacles to delivering mRNA vaccines in dental applications

Although mRNA vaccines demonstrate great potential, a number of barriers still hinder their adaptation to dental medicine. One of the most critical issues involves maintaining mRNA integrity in the highly variable oral setting [28]. Constant exposure to saliva, fluctuating acidity, and a dense microbial population make it difficult for mRNA to remain stable for long

periods [29]. Therefore, developing delivery platforms capable of directing mRNA precisely to oral tissues is essential for achieving successful outcomes [30]. Another important factor is maintaining immune equilibrium—stimulating defense mechanisms without provoking excessive inflammation that could worsen existing conditions [31]. Experimental research confirms that mRNA vaccines can influence immune regulation and encourage tissue regeneration, yet translating these findings into clinical dentistry remains an ongoing challenge [32]. Future investigations should prioritize the identification of oral-specific antigens and the creation of delivery systems uniquely adapted to the oral cavity to maximize vaccine performance in this area [33].

Potential risks, ethical issues, and future outlook


As an emerging therapeutic approach, mRNA vaccines in dental science must undergo comprehensive risk evaluation. Despite their success in other medical fields, localized inflammation and unpredictable immune activation remain major concerns when used within oral tissues [34]. Extensive testing—both through preclinical experiments in vitro and in animal models, as well as in human trials—will be necessary to establish their reliability and clinical safety [35]. Ethical topics also warrant careful discussion, including the protection of patient welfare, fairness in

access to new treatment technologies, and the responsible use of regenerative approaches for non-essential aesthetic procedures [36]. As this research area matures, ensuring both safety and efficacy will be vital to enable mRNA vaccines to transition from the laboratory to standard dental practice [37].

Head and Neck Cancer

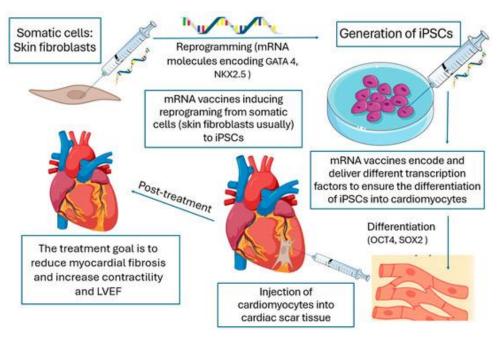
mRNA-Based strategies for HPV-associated head and neck tumors

In the last few years, RNA vaccines have gained notable attention for their role in combating head and neck cancers, particularly those linked to human papillomavirus (HPV) infections [38]. Multiple mRNA configurations—such as self-amplifying constructs, unmodified non-replicating sequences, and nucleosidemodified non-replicating versions—are currently under evaluation in preclinical settings [39]. These formulations code for tumor-associated proteins like Gde7, provoking immune recognition of cancerspecific antigens [40] (Figure 2). Stimulating CD8⁺ Tcell activity has proven especially promising in halting tumor development, with stronger results than previous DNA-based Gde7 vaccines [41]. Nonetheless, as is common in cancer immunotherapy, initial preclinical success often faces difficulties with reproducibility and consistent efficacy across experimental systems [42].

Figure 2. Overview of how mRNA vaccines may shape the future of immunotherapy and personalized oncology. Once introduced, mRNA molecules are translated into proteins displayed on antigen-presenting cells (APCs) through MHC I and II pathways. Engagement of CD28 and TCR then triggers CD4+ and CD8+ T-cell activation, leading to an amplified immune response that slows tumor growth

Two major strategies dominate mRNA vaccine delivery in current studies: direct injection and ex vivo dendritic cell (DC) loading [43]. Direct administration is quicker and less expensive but poses challenges due to the enzymatic breakdown of RNA by natural RNases in the body [44]. Encapsulation in lipid nanoparticles (LNPs) or positively charged complexes can help

preserve mRNA integrity, enhance cellular absorption, and boost immune activation [45, 46]. In contrast, ex vivo DC-based vaccination allows for refined control of antigen presentation and can produce stronger immune responses, though it remains time-intensive, technically demanding, and expensive because of the need to isolate, modify, and reinfuse DCs.


Broadening the use of mRNA vaccines for Non-HPV head and neck tumors

While lipid nanoparticles (LNPs) have significantly improved mRNA protection and uptake, they also introduce complications such as toxicity risks, unwanted immune reactions, and targeting difficulties [47]. These drawbacks, shared by many nanoparticledriven delivery systems, underscore the importance of refining such approaches for application in head and neck oncology [48]. Achieving a balance between strong therapeutic impact and biological safety will be key, necessitating additional in-depth research [49]. Although most available data emphasize HPV-related tumors, expanding mRNA technology to non-HPVassociated cancers represents a major future opportunity [50]. Promising immune activation observed in murine studies requires further exploration to assess its duration, magnitude, and overall effectiveness [51]. Long-term investigations will be essential to validate these preclinical results and define their clinical importance [52]. In summary, mRNA vaccine strategies hold great promise for treating head and neck cancers, particularly HPV-driven cases [53]. However, advancing delivery techniques, improving immune monitoring, and expanding research into non-HPV cancers are crucial steps toward clinical translation and therapeutic application.

mRNA vaccines in regenerative Medicine: Mechanisms and approaches

Messenger RNA (mRNA) technologies have recently gained momentum in regenerative medicine for their capacity to encode bioactive molecules capable of inducing cellular transformation and differentiation [54]. Unlike conventional gene therapy, mRNA platforms avoid genomic integration, providing a much safer profile that has intensified research attention [55]. Two principal strategies have evolved for regenerative purposes: the use of mRNA to drive the differentiation of induced pluripotent stem cells (iPSCs) and the direct conversion of somatic cells into specialized types [56]. In the iPSC-based method, adult cells are reprogrammed into a pluripotent state and then guided toward particular functional lineages. Although efficient, this process can result in tumor formation if undifferentiated cells persist [57]. In contrast, direct reprogramming eliminates the pluripotent step by converting mature cells straight into specific cell types. This approach offers a reduced oncogenic risk but still struggles with yield and clinical scalability [58] (Figure 3). Across medicine, mRNA treatments have proven versatile in promoting tissue recovery—for example, VEGF-A mRNA has aided cardiac regeneration, and dystrophin-directed therapies have shown potential in repairing muscle damage in Duchenne muscular dystrophy [59, 60].

Regenerative Medicine

Figure 3. The underlying concepts of mRNA-driven tissue repair are broadly similar across medical disciplines. In cardiac fibrosis models, mRNA administration initiates pluripotency, cellular reprogramming, and differentiation, restoring functional cardiomyocytes and improving cardiac contractility along with left ventricular ejection fraction (LVEF). The central goal is to regenerate functional parenchymal tissue. Key transcriptional regulators—OCT4 and SOX2 for differentiation, and GATA4 and NKX2.5 for

reprogramming—are typically delivered through mRNA constructs to achieve this outcome

mRNA-Based regenerative therapies in dentistry: Opportunities and challenges

In dental research, mRNA-based regenerative strategies have shown notable potential in bone reconstruction and implantology. In a study by Itaka et al., mRNA encoding the osteogenic regulator Runx2 and the angiogenic factor VEGF acted synergistically to accelerate jawbone restoration in rat models [61]. Runx2 promoted osteoblast differentiation, while VEGF enhanced new vessel growth, together creating a favorable environment for bone formation. Expression of osteogenic markers such as osteopontin and osteocalcin increased substantially, confirming enhanced bone metabolism [62, 63]. Parallel investigations by Zhang et al. and Xu Q et al. validated these interactions, emphasizing the joint impact of Runx2 and VEGF in supporting optimal bone healing [64, 65]. However, Zhang et al.'s (2023) work involved only a limited sample of 30 rats, restricting the clinical implications [66]. Larger animal trials are therefore necessary before progressing toward applications.

Further innovation in delivery technologies—especially in lipid nanoparticle (LNP) formulations—is essential to refine stability, boost transfection efficiency, and minimize immune activation [67]. Transitioning mRNA-based regenerative therapy into clinical dentistry will also depend on navigating ethical and regulatory challenges, ensuring biosafety, managing immunogenicity, and reducing economic inequities [68]. Ultimately, collaborative efforts among multiple scientific and clinical disciplines will be vital for overcoming current limitations and realizing the full therapeutic scope of mRNA technology in tissue regeneration.

Implantology

The promise of mRNA vaccines in dental implantology mRNA-based interventions are emerging as a powerful tool in dental implantology, offering the possibility to enhance healing and improve patient recovery through precise modulation of molecular and immune These pathways. therapeutic effects, initially demonstrated in orthopedic joint implants, can potentially accelerate tissue regeneration around dental implants [69]. Translating these orthopedic outcomes to the oral environment, however, requires careful adaptation due to challenges such as the diversity of oral microbiota and variations in alveolar bone quality [70].

These vaccines can help control postoperative inflammation by fine-tuning immune responses and encouraging the release of anti-inflammatory which prevents excessive immune activation at the site of implantation [71]. Local VEGF expression supports new blood vessel formation, necessary nutrients, providing while morphogenetic proteins (BMPs), particularly BMP-2, stimulate osteoblast differentiation and mineral deposition to accelerate bone repair [72]. Together, these mechanisms promote osseointegration—the formation of new bone around the implant—enhancing stability, reducing infection risk, and lowering the likelihood of implant failure [73]. The combination of immunomodulatory, anti-inflammatory, regenerative effects positions mRNA therapies as a groundbreaking approach in dental implantology [74].

Research progress and challenges in mRNA dental applications

Several preclinical studies provide evidence for the potential of mRNA vaccines in improving dental implant outcomes. Liu et al. reported that BMP-2 mRNA improved osteogenic activity in periodontal ligament stem cells, suggesting enhanced integration of implants [75]. Similarly, Zhou et al. demonstrated accelerated bone regeneration and improved implant fixation in rats treated with BMP-2 mRNA following implant failure [76]. These findings indicate that mRNA-based treatments could be particularly valuable for patients with poor bone quality or delayed healing. Despite promising results, obstacles remain. Immune overactivation is a significant concern, as excessive inflammation can compromise bone healing [77]. The oral cavity presents additional challenges, such as fluctuating temperature and moisture, which can affect mRNA stability. Lipid nanoparticles (LNPs) are commonly used to protect and deliver mRNA, but their design needs refinement for oral applications. Optimal LNPs should have diameters between 50-150 nm to maximize cellular uptake while avoiding clearance by the body's reticuloendothelial system. Modifying lipid composition—through ionizable and PEGylated lipids—can further improve stability and ensure controlled mRNA release directly to bone or surrounding tissues [78].

Future directions and clinical translation

mRNA vaccines have the potential to transform dental implantology by promoting more efficient osseointegration and tissue repair [79]. Nevertheless, applying orthopedic findings to dental practice requires

addressing unique oral factors, including interactions with oral microbes and compatibility with dental materials [80]. Future studies should focus on refining delivery systems, optimizing formulations, and evaluating long-term safety and efficacy. Cost-effectiveness is also an important consideration, as localized mRNA interventions could impose financial barriers [81].

Dental caries

Pathogenesis overview

Dental caries is a chronic, multifactorial disease primarily driven by biofilm formation, with Streptococcus mutans identified as the main causative organism due to its superior ability to form structured biofilms [82]. Within the plaque matrix, S. mutans metabolizes polysaccharides to produce lactic acid, accounting for approximately 70% of the total organic acids in the biofilm [83]. This acid accumulation disrupts the natural balance between demineralization and remineralization of enamel, favoring tooth decay [84] (Figure 4). Consequently, strategies aimed at preventing biofilm formation represent promising approaches for caries prevention [85].

Potential of RNA-Based therapies in caries prevention

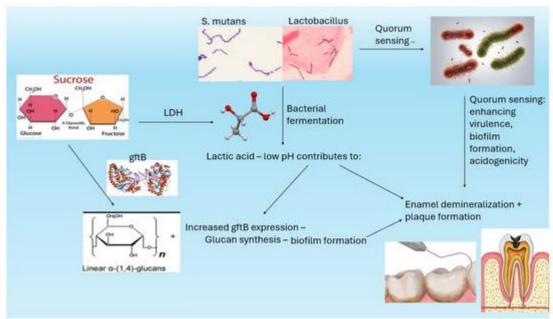


Figure 4. The pathogenesis of dental caries highlights potential intervention points for mRNA vaccines.

Targeting S. mutans could inhibit the synthesis of glucan-based polysaccharides and reduce lactic acid production, thereby limiting demineralization and plaque accumulation. Other bacterial species, such as Lactobacillus, contribute to biofilm development and communicate through quorum-sensing pathways, which may also serve as potential targets for RNA-based preventive strategies

In modern dentistry, there has been a shift towards prioritizing disease prevention and maintaining tooth integrity over surgical treatments [86]. One of the early advancements, in 2006, involved the creation of oligodeoxyribonucleotides designed to target gtfB mRNA. This approach helped to decrease glucan production and inhibit biofilm formation [87]. However, RNA-based treatments saw limited progress until more recent innovations. In 2024, a revolutionary method developed by Shung Yu combined antisense vicK RNA (ASvicK) from S. mutans with Dimethylaminohexadecyl methacrylate (DMAHDM), demonstrating a powerful synergy in reducing biofilm formation. ASvicK specifically targets and suppresses the expression of the vicK gene, which is vital for

glucan production, thereby destabilizing the biofilm and diminishing its pathogenic potential [88]. On the other hand, DMAHDM interacts with bacterial cell membranes, embedding itself into the lipid layers, disrupting their integrity, and promoting cell death. This dual approach proves far more effective in reducing biofilm growth and the risk of cavities compared to single-target methods. Laboratory tests confirm that this combination also helps reduce enamel demineralization, showing promise in the prevention of early-stage caries. Overall, this novel treatment addresses key stages of dental caries development, offering a promising preventive approach via RNA technology.

The future of mRNA vaccines for dental caries

Previously believed to be an issue limited to children, dental caries has now been recognized as a disease that continues to affect adults, with prevalence rates ranging from 26% to 85% [89]. While the initial costs of developing and administering anti-caries vaccines are high, these vaccines could lead to substantial cost savings in the long run. Traditional preventive methods, like using fluoride toothpaste and scheduling regular dentist visits, demand constant effort and ongoing maintenance [90]. Conversely, an anti-caries vaccine could provide lasting immunity against Streptococcus mutans, significantly reducing the need for recurring treatments, such as fillings and root canals, and decreasing the risk of complications like infective endocarditis and bone deterioration [91]. This move from treatment-focused to prevention-based care has the potential to revolutionize oral health by providing a sustainable, proactive solution [92].

The application of mRNA vaccines in fighting dental caries is especially promising. New therapies, such as combining ASvicK RNA and DMAHDM, have proven effective in lab studies by targeting bacterial virulence and metabolism [93]. These innovations demonstrate the potential for mRNA vaccines to alleviate the global impact of caries [94]. However, clinical trials are still in their infancy, and obstacles such as research funding, high costs, and regulatory approvals need to be addressed. Additional challenges include public hesitancy, difficulties in administering the vaccine in dental settings, and concerns about antimicrobial resistance. Overcoming these hurdles and advancing research into clinical practice will be crucial for broad implementation [95]. If successfully developed, anticaries vaccines could dramatically improve long-term oral health, reduce treatment costs, and enhance quality of life.

Periodontal Disease

Understanding the pathogenesis of periodontal disease Periodontal disease (PD) is a persistent inflammatory condition caused by an imbalance in oral microbiota, characterized by the destruction of tissues supporting the teeth. The progression of PD does not rely solely on P. gingivalis, but instead is influenced by its interactions with other pathogens like F. nucleatum, which helps stabilize biofilms and amplifies P. pathogenic effects. Other gingivalis' significant microorganisms involved in PD include Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Eikenella corrodens [96]. These pathogens interfere with the host's immune system by disrupting the activity of Toll-like receptors and complement pathways, undermining neutrophil and macrophage function. This leads to an imbalance the microbial community, immune system malfunction, excessive inflammation, and breakdown of bone tissue through processes like matrix metalloproteinase release, RANKL production, reactive oxygen species (ROS) generation, and tissue necrosis [97]. Despite numerous treatment approaches, no single therapy has proven to be universally successful. Since inflammation is a major factor in disease development, certain progress has been made using anti-TNF-α and anti-IL-1 treatments [98]. However, because P. gingivalis and dysbiosis are key drivers of tissue damage, the most logical strategy may involve early vaccination to prevent bacterial colonization and the onset of subsequent pathological events in the mouth [99].

Impact of immune system disruption

Research suggests that variation in bacterial strains might explain the diverse progression of diseases, as less virulent strains tend to coexist in asymptomatic individuals [100]. Furthermore, immune system malfunctions play a crucial role in advancing the disease, with persistent inflammation primarily caused by imbalanced T-helper cell activity (Th1 and Th17) and insufficient functioning of regulatory T-cells (Tregs) [101]. For example, Vaernewyck et al. highlighted an overly activated mucosal immune response. However, the observed variability in immune reactions based on bacterial strains underscores the importance of focused research to enhance vaccine targeting and immune regulation [102]. These findings emphasize the need to consider both microbial behavior and immune dysfunction to fully understand the progression of periodontal disease (PD).

Host factors influencing disease development

Factors intrinsic to the host, such as immune function, genetic makeup, and environmental exposures, significantly influence the course of PD [103]. The inability to properly regulate immune responses, leading to persistent inflammation, is a key contributor to tissue damage [104]. Salivary secretory IgA (SIgA) has emerged as an important protective agent that helps maintain a balanced relationship between the host and the microbiome [105]. However, systemic conditions, like diabetes, or lifestyle choices, such as smoking, can disrupt this balance, making the disease more severe. This highlights the need for research that investigates the interaction between host factors and microbial influences to design tailored prevention and treatment strategies.

mRNA vaccines: A new frontier for pd prevention mRNA vaccines offer an innovative strategy for preventing PD by focusing on key pathogens and modulating immune responses. These vaccines introduce antigens designed to trigger protective immunity, with the goal of halting biofilm formation and mitigating inflammation-related tissue damage. Studies in animal models, especially rodents, have shown that mRNA vaccines targeting P. gingivalis can reduce alveolar bone resorption and inflammation by stimulating a strong SIgA response. Mucosal vaccines, in particular, have demonstrated superior efficacy compared to systemic approaches, providing robust immunity in the oral cavity. Despite this, challenges remain in optimizing the balance between vaccineinduced immunity and inflammation control. Lipid nanoparticles (LNPs) have enhanced antigen expression but have also been linked to excessive cytokine release. Modifying the mRNA sequence, similar to the approaches used in COVID-19 vaccines, could improve immune response while reducing inflammatory side effects [106].

Overcoming obstacles in vaccine development
Although preclinical studies are promising, there are still many challenges to making mRNA vaccines for PD viable in clinical practice. PD's complex, polymicrobial nature requires vaccines capable of targeting multiple pathogens to address dysbiosis effectively [107]. Results from trials in larger animal models, such as dogs, have been inconsistent, likely due to species-specific differences in microbiota composition and the complexity of PD pathogenesis [108]. Future studies should aim to better align vaccine formulations with human disease mechanisms [109]. Optimizing mucosal vaccination is especially important, as it has been shown to generate stronger immune responses, particularly IgA. Further work is

needed to explore how host susceptibility and environmental factors can be integrated into vaccine designs to ensure they are broadly effective. While the complexity of PD presents challenges, combining multivalent vaccines with mucosal delivery could be a promising route for effective prevention and management [110-112]. One key issue for RNA-based vaccines in periodontitis is achieving a strong immune response without exacerbating inflammation, which is a core feature of the disease [113]. Therefore, optimizing formulations to boost immunity while avoiding inflammation-driven damage is critical for success [114].

Conclusion

To sum up, while mRNA vaccines hold great potential in the field of dentistry, especially for conditions like dental caries, periodontal disease, and implantology, their clinical application is still in its infancy. Further research is necessary to address crucial challenges, such as enhancing vaccine formulations for localized use, ensuring efficient delivery systems, preventing adverse immune reactions [115]. Additionally, the transition from preclinical studies to human trials faces numerous regulatory and acceptance challenges. While mRNA vaccines have proven successful in other medical domains, future research must focus on their specific applications in dental care to ensure that benefits outweigh the risks [116]. In the long term, mRNA vaccines could fundamentally change dental practices by improving immune defenses, preventing infections, and promoting tissue regeneration. However, a thorough understanding of their safety, effectiveness, and long-term outcomes will be essential for their successful integration into clinical settings [117].

Table 1. This table outlines the various applications of mRNA technology within dentistry, focusing on areas like regenerative therapies, cancer treatments, and combating infectious or inflammatory conditions. Examples include the use of mRNA to produce BMP-2 for tissue repair, mRNA-based vaccines targeting HPV-related cancers, antisense oligonucleotides to mitigate bacterial virulence in dental caries, and approaches for modulating immune responses in periodontal disease. It also addresses the difficulties in enhancing lipid nanoparticle (LNP) delivery systems for mRNA, underscoring the necessity for continued research to fully harness the therapeutic benefits of mRNA technologies in oral health care

Applicatio n Domain	Research Focus	Investigators/Sou rce	Study Nature	Core Observations	Supplementa ry Notes
Bone and Tissue Restoration	mRNA-Induced BMP- 2 Promotes Bone Growth in Periodontal Stem Cells	Liu <i>et al.</i> 75]	Preclinical/Cell -Based	BMP-2 mRNA enhanced bone formation in periodontal ligament stem cells.	Holds promise for regenerating dental tissues.
	BMP-2 mRNA Speeds	Zhou et al. [76]	Preclinical/Ani	BMP-2 mRNA	Highlights
	Up Recovery and		mal Testing	accelerated healing	bone-

Marconcini *et al.*, Advancing Oral Health: Preclinical Findings and Future Prospects of mRNA Vaccines in Dental Applications—A Comprehensive Review

	Stabilizes Implants in Rat Models			and improved implant stability in rats with dental implant failures.	stimulating capabilities of mRNA in living systems.
HPV- Linked Head and Neck Tumors	BNT113 with Pembrolizumab for Initial Treatment of Advanced HNSCC: Early Safety Insights	Klinghammer et al. [53]	Human Trial	Initial safety results showed positive outcomes from combining BNT113 mRNA vaccine with pembrolizumab for advanced, unresectable HNSCC.	BNT113 targets HPV- 16 E6 and E7 antigens associated with HPV- driven head and neck cancers.
Non-HPV Oral Tumors	Custom mRNA Vaccines Paired with Immune Modulators for Oral Tumor Therapy	Gheena and Ezhilarasan [16]	Preclinical	Custom mRNA vaccines combined with immune modulators improved tumor immunity and patient outcomes in oral tumor models.	Emphasizes the combined effect of mRNA vaccines and immune modulators in oral tumor treatment.
Dental Decay	Antisense Oligodeoxyribonucleot ides Targeting gtfB mRNA Suppress Streptococcus mutans Activity	Guo <i>et al.</i> [87]	Preclinical	Antisense oligodeoxyribonucleot ides targeting gtfB mRNA reduced gtfB expression and function in Streptococcus mutans.	Focuses on disrupting bacterial genes to lower cariescausing activity.
	ASvicK RNA with DMAHDM Reduces Biofilm and Protects Enamel	Shung Yu [89]	Preclinical/Cell -Based	ASvicK RNA combined with DMAHDM inhibited biofilm growth and enamel erosion.	Suggests RNA-based strategies for preventing dental decay.
Gum Inflammati on	Suppressing Th17 Cells: A Novel Strategy for Oral Mucosal Inflammation	Wang <i>et al.</i> [100]	Preclinical	Reducing Th17 cell activity decreased inflammation in oral mucosal conditions, including gum inflammation, by regulating immune responses.	Offers a potential approach for managing oral mucosal inflammatory conditions.
	Oral Mucosal Immunization Against Gum Inflammation: Current Advances and Potential	Vaernewyck [102]	Preclinical	Oral mucosal vaccines elicited strong salivary IgA responses.	Indicates effectiveness of mRNA- based mucosal vaccines in the oral environment.
Delivery Optimizati on	Enhancing mRNA Lipid Nanoparticle Systems: Delivery and Therapeutic Insights	Liu <i>et al.</i> [117]	Preclinical/Cell -Based	Particle size, surface charge, and ionizable lipids are critical for effective and stable mRNA delivery.	Provides guidance on improving lipid nanoparticle systems for mRNA applications.

Acknowledgments: None Ethics Statement: None

Conflict of Interest: None References

Financial Support: None

- Hogan MJ, Pardi N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu Rev Med. 2022;73:17–39.
- 2. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X, et al. mRNA vaccine: A potential therapeutic strategy. Mol Cancer. 2021;20:33.
- 3. Hu X, Enbar T, Tang L. Delivery approaches of immunomodulatory nucleic acids for cancer therapy. Curr Opin Biotechnol. 2024;89:103182.
- 4. Hwa Kim S, Miyata K. Preface: A new era of RNA-based therapies. Adv Drug Deliv Rev. 2024;205:115162.
- Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev. 2024;205:115175.
- Silver N, Garg R, Mendez-Gomez H, Castillo P, Souza C, Fagman L, et al. Remodeling host immune response in head and neck cancer with personalized therapeutic mRNA nano-vaccines. In: Proceedings of the SITC 37th Annual Meeting (SITC 2022) Abstracts, Boston, MA, USA, 8–12 November 2022. p. A1437.
- Könönen E, Kumar PS. Bacteriology of periodontal diseases. In: Molecular Medical Microbiology. Cambridge, MA: Academic Press; 2015. p. 957–68.
- 8. Alghamdi HS. Methods to improve osseointegration of dental implants in low quality (type-IV) bone: An overview. J Funct Biomater. 2018;9:7.
- 9. Gao Z, Chen X, Wang C, Song J, Xu J, Liu X, et al. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol Res. 2023;278:127526.
- Liu X, Huang P, Yang R, Deng H. mRNA cancer vaccines: Construction and boosting strategies. ACS Nano. 2023;17:19550–80.
- Kurita-Ochiai T, Hashizume-Takizawa T, Kobayashi R, Yamamoto M, et al. Mucosal vaccines for oral disease. In: Mucosal Vaccines. Amsterdam, The Netherlands: Elsevier; 2020. p. 649–61.
- 12. Zhang Y, Zhai S, Huang H, Qin S, Sun M, Chen Y, et al. Efficient signal sequence of mRNA vaccines enhances the antigen expression to expand the immune protection against viral infection. J Nanobiotechnol. 2024;22:295.
- 13. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—A new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.

- 14. Zhang S. Dental caries and vaccination strategy against the major cariogenic pathogen, Streptococcus mutans. Curr Pharm Biotechnol. 2013;14:960–6.
- Ferrer MD, Pérez S, Lopez AL, Sanz JL, Melo M, Llena C. Evaluation of clinical, biochemical and microbiological markers related to dental caries. Int J Environ Res Public Health. 2021;18:6049.
- Gheena S, Ezhilarasan D. Personalized mRNA cancer vaccines with immune checkpoint inhibitors: A promising therapeutic approach in oral cancer patients. Oral Oncol. 2023;137:106282.
- 17. Sanchez DS, Alejandro, Paunovska K, Cristian A, Dahlman JE, et al. Treating cystic fibrosis with mRNA and CRISPR. Hum Gene Ther. 2020;31:940–55.
- Chen Y, Jiang N, Chen M, Sui B, Liu X. Identification of tumor antigens and immune subtypes in head and neck squamous cell carcinoma for mRNA vaccine development. Front Cell Dev Biol. 2022;10:1064754.
- 19. Ghosh S, Shah PA, Johnson FM. Novel systemic treatment modalities including immunotherapy and molecular targeted therapy for recurrent and metastatic head and neck squamous cell carcinoma. Int J Mol Sci. 2022;23:7889.
- Zhang A, Ji Q, Sheng X, Wu H. mRNA vaccine in gastrointestinal tumors: Immunomodulatory effects and immunotherapy. Biomed Pharmacother. 2023;166:115361.
- 21. Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release. 2024;369:696–721.
- Senti ME, del Valle LG, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev. 2024;206:115190.
- 23. Gadi SRV, Brunker PAR, Al-Samkari H, Sykes DB, Saff RR, Lo J, et al. Severe autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine. Transfusion. 2021;61:3267–71.
- 24. Ho W, Gao M, Li F, Li Z, Zhang X-Q, Xu X, et al. Next-generation vaccines: Nanoparticle-mediated DNA and mRNA delivery. Adv Healthc Mater. 2021;10:2001812.
- Wen ZT, Huang X, Ellepola K, Liao S, Li Y. Lactobacilli and human dental caries: More than mechanical retention. Microbiology. 2022;168:001196.

- Anttila V, Saraste A, Knuuti J, Hedman M, Jaakkola P, Laugwitz KL, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther. 2023;31:866–74.
- 27. Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, et al. Non-coding RNAs as potential targets for diagnosis and treatment of oral lichen planus: A narrative review. Biomolecules. 2023;13:1646.
- Coffey JW, Gaiha GD, Traverso G. Oral biologic delivery: Advances toward oral subunit, DNA, and mRNA vaccines and the potential for mass vaccination during pandemics. Annu Rev Pharmacol Toxicol. 2021;61:517–40.
- 29. Fiedler K, Lazzaro S, Lutz J, Rauch S, Heidenreich R, et al. mRNA cancer vaccines. Curr Strateg Cancer Gene Ther. 2016;209:61–85.
- 30. Kirtane AR, Tang C, Freitas D, Bernstock JD, Traverso G, et al. Challenges and opportunities in the development of mucosal mRNA vaccines. Curr Opin Immunol. 2023;85:102388.
- 31. Adil SM, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, et al. Vaccine formulation strategies and challenges involved in RNA delivery for modulating biomarkers of cardiovascular diseases: A race from laboratory to market. Vaccines. 2023;11:241.
- 32. Ikeda T, Kobayashi R, Kurita-Ochiai T. Comparison of mucosal immune response after oral, nasal or sublingual immunization with an outer membrane protein of Porphyromonas gingivalis. Int J Oral-Med Sci. 2013;12:121–8.
- 33. Wisitrasameewong W, Champaiboon C, Surisaeng T, Sa-Ard-Iam N, Freire M, Pardi N, et al. The impact of mRNA technology in regenerative therapy: Lessons for oral tissue regeneration. J Dent Res. 2022;101:1015–24.
- 34. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.
- 35. Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC, et al. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine. 2021;39:2190–200.
- Chabanovska O, Galow A-M, David R, Lemcke H, et al. mRNA—A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev. 2021;179:114002.
- 37. Knezevic I, Liu MA, Peden K, Zhou T, Kang H-N, et al. Development of mRNA vaccines: Scientific and regulatory issues. Vaccines. 2021;9:81.

- 38. Iqbal L, Jehan M, Azam S. Advancements in mRNA vaccines: A promising approach for combating human papillomavirus-related cancers. Cancer Control. 2024;31:10732748241238629.
- 39. Dörrie J, Schaft N, Schuler G, Schuler-Thurner B. Therapeutic cancer vaccination with ex vivo RNA-transfected dendritic cells—An update. Pharmaceutics. 2020;12:92.
- 40. Li H-X, Liu T-R, Tu Z-X, Xie C-B, Wen W-P, Sun W, et al. Screening of tumor antigens and construction of immune subtypes for mRNA vaccine development in head and neck squamous cell carcinoma. Biomolecules. 2022;13:90.
- 41. Fasano M, Della Corte CM, Di Liello R, Viscardi G, Sparano F, Iacovino ML, et al. Immunotherapy for head and neck cancer: Present and future. Crit Rev Oncol Hematol. 2022;174:103679.
- 42. He Q, Gao H, Tan DJ, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 2022;12:2969–89.
- 43. Álvarez-Benedicto E, Farbiak L, Ramírez MM, Wang X, Johnson LT, et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci. 2022;10:549–59.
- van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR,. Cutting edge: The mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol. 2000;165:4778–82.
- 45. Tacken PJ, De Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7:790–802.
- 46. Zhou F, Huang L, Li S, Yang W, Chen F. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. Exploration. 2023;4:20210146.
- 47. Strachan JB, Brendan P, Nasa DZ, Valery C, Charlotte, Conn E, et al. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. J Colloid Interface Sci. 2020;576:241–51.
- 48. Winter E, Pizzol CD, Locatelli C, Crezkynski-Pasa TB, et al. Development and evaluation of lipid nanoparticles for drug delivery: Study of toxicity in vitro and in vivo. J Nanosci Nanotechnol. 2016;16:1321–30.
- Bae S-H, Yoo S, Lee J, Park H-J, Kwon SP, Jin H, et al. A lipid nanoparticle platform incorporating trehalose glycolipid for exceptional mRNA vaccine safety. Bioact Mater. 2024;38:486–98.
- 50. Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, et al. mRNA vaccines in the context of cancer

treatment: From concept to application. J Transl Med. 2025;23:12.

Marconcini et al., Advancing Oral Health: Preclinical Findings and Future Prospects of mRNA Vaccines in Dental Applications—A Comprehensive Review

- 51. Luo P-K, Ho H-M, Chiang M-C, Chu L-A, Chuang Y-H, Lyu P-C, et al. pH-responsive β-glucans-complexed mRNA in LNPs as an oral vaccine for enhancing cancer immunotherapy. Adv Mater. 2024;36:2404830.
- 52. Lin Y, Chen X, Wang K, Liang L, Zhang H. An overview of nanoparticle-based delivery platforms for mRNA vaccines for treating cancer. Vaccines. 2024;12:727.
- 53. Klinghammer K, Saba NF, Castelluci E, Colevas AD, Rutkowski T, Greil R, et al. BNT113 + Pembrolizumab as firstline treatment in patients with unresectable recurrent/metastatic HNSCC: Preliminary safety data from AHEAD-MERIT. Immuno-Oncol Technol. 2022;16:100267.
- 54. Yang T, Poenisch M, Khanal R, Hu Q, Dai Z, Li R, et al. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model. J Hepatol. 2021;75:1420–33.
- 55. Inagaki M. Cell reprogramming and differentiation utilizing messenger RNA for regenerative medicine. J Dev Biol. 2023;12:1.
- Wang AYL. Application of modified mRNA in somatic reprogramming to pluripotency and directed conversion of cell fate. Int J Mol Sci. 2021;22:8148.
- Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells—focus on Japan. FEBS J. 2022;289:7274– 91.
- 58. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
- Qabrati X, Kim I, Ghosh A, Bundschuh N, Noe F, Palmer AS, et al. Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. NPJ Regen Med. 2023;8:43.
- 60. Jardin B, Epstein JA. Emerging mRNA therapies for cardiac fibrosis. Am J Physiol Cell Physiol. 2024;326:C107–11.
- 61. Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, et al. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res Part A. 2021;109:849–58.
- 62. Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone

2016;126:509–26.
63. Kajimura D, Zong H, Takarada T, Lezaki T, Pessin JE, Hinoi E, et al. Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation

and bone formation. Cell. 2015;161:1576-91.

- 64. Zhang M, Fukushima Y, Nozaki K, Nakanishi H, Deng J, Wakabayashi N, et al. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm Regen. 2023;43:32.
- 65. Xu Q, Liu Z, Guo L, Liu R, Li R, Chu X, et al. Hypoxia mediates runt-related transcription factor 2 expression via induction of vascular endothelial growth factor in periodontal ligament stem cells. Mol Cells. 2019;42:763–72.
- 66. Tsou H-K, Wu C-H, Chan LY, Kataoka K, Itokazu N, Tsuzuki M, et al. Administration of mRNA-nanomedicine-augmented calvarial defect healing via endochondral ossification. Pharmaceutics. 2023;15:1965.
- 67. Kim B, Hosn RR, Remba T, Yun D, Li N, Abraham W, et al. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J Control Release. 2023;353:241–53.
- 68. Halma MT, Rose J, Lawrie T. The novelty of mRNA viral vaccines and potential harms: A scoping review. J. 2023;6:220–35.
- 69. Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, et al. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: An in vivo study. Sci Rep. 2018;8:1843.
- 70. Stanford CM. Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int J Mol Sci. 2010;11:354–69.
- 71. Wang C-Y, Qin Z-X, Wei Y, Hao J-X, Zhu Y-F, Zhao F, et al. The immunomodulatory effects of RNA-based biomaterials on bone regeneration. Acta Biomater. 2023;162:32–43.
- 72. Geng Y, Duan H, Xu L, Witman N, Yan B, Yu Z, et al. BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol. 2021;4:82.
- 73. Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. Biomater Adv. 2022;143:213176.
- 74. Liu Y, Liu Q, Li Z, Acharya A, Chen D, Chen Z, et al. Long non-coding RNA and mRNA

Marconcini et al., Advancing Oral Health: Preclinical Findings and Future Prospects of mRNA Vaccines in Dental

- expression profiles in peri-implantitis vs periodontitis. J Periodontal Res. 2019;55:342–53.
- 75. Liu Z, Zhang L, Wang C, Shi X, Huang L. mRNA encoding BMP-2 enhances osteogenesis in periodontal ligament stem cells and holds potential for improving dental implant integration. J Clin Periodontol. 2023;50:891–900.
- Zhou J, Li W, Zhang S, Wang Y, Liu L. mRNA vaccines encoding BMP-2 accelerate healing and improve implant stability in a rat model of dental implants. Mol Ther Methods Clin Dev. 2021;20:212–23.
- 77. Song Y, Mehl F, Zeichner SL, et al. Vaccine strategies to elicit mucosal immunity. Vaccines. 2024;12:191.
- 78. Ongun M, Lokras AG, Baghel S, Shi Z, Schmidt ST, Franzyk H, et al. Lipid nanoparticles for local delivery of mRNA to the respiratory tract: Effect of PEG-lipid content and administration route. Eur J Pharm Biopharm. 2024;198:114266.
- Gore D, Kanase S, Bhor D, Pawar T, Kale S, Deokar A, et al. A detailed review of emerging therapy for oral health. Int J Sci R Tech. 2024;264–74.
- 80. Deng B, Liu S, Wang Y, Ali B, Kong N, Xie T, et al. Oral nanomedicine: Challenges and opportunities. Adv Mater. 2024;36:2306081.
- 81. Mochida Y, Uchida S, et al. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol. 2024;21:1–27.
- 82. Rezaei T, Mehramouz B, Gholizadeh P, Yousefi L, Ganbarov K, Ghotaslou R, et al. Factors associated with Streptococcus mutans pathogenicity in the oral cavity. Biointerface Res Appl Chem. 2023;13:368.
- 83. Hajishengallis E, Parsaei Y, Klein MI, Koo H. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017;32:24–34.
- 84. Javanmard Z, Pourhajibagher M, Bahador A. Advancing anti-biofilm strategies: Innovations to combat biofilm-related challenges and enhance efficacy. J Basic Microbiol. 2024;64:e2400271.
- 85. Pangabam BD, Naorem RS, Teli AB, Fekete C. Immunoinformatics-driven multiepitope vaccine targeting Streptococcus mutans for dental caries prevention. Res Sq. 2023;PPR700749. Available from: https://www.researchsquare.com/article/rs-3214083/v1
- 86. Warreth A. Dental caries and its management. Int J Dent. 2023;2023:9365845.
- 87. Guo QY, Xiao G, Li R, Guan SM, Zhu XL, Wu JZ, et al. Treatment of Streptococcus mutans with

- antisense oligodeoxyribonucleotides to gtfB mRNA inhibits GtfB expression and function. FEMS Microbiol Lett. 2006;264:8–14.
- 88. Mao MY. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans. Front Microbiol. 2016;7:687.
- 89. Yu S, Xu M, Wang Z, Deng Y, Xu HHK, Weir MD, et al. S. mutans antisense vicK RNA over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses oral biofilms and protects enamel hardness in extracted human teeth. Pathogens. 2024;13:707.
- Ozdemir D, et al. Dental caries: The most common disease worldwide and preventive strategies. Int J Biol. 2013;5:55.
- 91. Han J, Poma A. Molecular targets for antibodybased anti-biofilm therapy in infective endocarditis. Polymers. 2022;14:3198.
- 92. Contreras S, Mayta-Tovalino F, Munive-Degregori A, Mendoza R, Barja-Ore J, Mauricio-Vilchez C, et al. Anticaries vaccine as a promising alternative for protection against dental caries: A literature review. J Int Oral Health. 2023;15:34–42.
- 93. Chen H, Tang Y, Weir MD, Gao J, Imazato S, Oates TW, et al. Effects of S. mutans genemodification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dent Mater. 2020;36:296–309.
- 94. Nabeel M, Nisath SMR, Reddy MH, Rohan Vignesh S, Joshi A, et al. Advancing oral healthcare: AI-driven caries detection and nanomaterial-enhanced treatment. SSRN Electron J. 2024. accepted.
- 95. Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, et al. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnol. 2024;22:715.
- Franco C, Patricia HR, Timo S, Claudia B, Marcela H, et al. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci. 2017;18:440.
- 97. Waykole YP, Doiphode SS, Rakhewar PS, Mhaske M, et al. Anticytokine therapy for periodontal diseases: Where are we now? J Indian Soc Periodontol. 2009;13:64–8.
- 98. Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, et al. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol. 2024;140:112650.

- Marconcini et al., Advancing Oral Health: Preclinical Findings and Future Prospects of mRNA Vaccines in Dental Applications—A Comprehensive Review
- 99. Yusoff ME, Hamdan RH, Taib MDH, Peng TL, Mohamed M, Shaari MDR, et al. Overview of Gram-negative anaerobic pathogens associated with periodontal disease: A review. Asian J Med Biomed. 2024;8:98–110.
- 100. Wang Y, Xue N, Wang Z, Zeng X, Ji N, Chen Q, et al. Targeting Th17 cells: A promising strategy to treat oral mucosal inflammatory diseases. Front Immunol. 2023;14:1236856.
- 101.Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E, et al. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000. 2023.
- 102. Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B, et al. Mucosal vaccination against periodontal disease: Current status and opportunities. Front Immunol. 2021;12:768397.
- 103.Genco RJ, Borgnakke WS, et al. Risk factors for periodontal disease. Periodontol 2000. 2013;62:59–94.
- 104.Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020;83:26–39.
- 105. Chang E, Kobayashi R, Fujihashi K, Komiya M, Kurita-Ochiai T, et al. Impaired salivary SIgA antibodies elicit oral dysbiosis and subsequent induction of alveolar bone loss. Inflamm Res. 2020;70:151–8.
- 106.Lee J, Woodruff MC, Kim EH, Nam JH. Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med. 2023;55:1305–13.
- 107.Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis from a microbial and host perspective relative to oral health and disease. Front Microbiol. 2021;12:617485.
- 108. Verschoren J. Development of a buccal selfamplifying mRNA vaccine for periodontal disease prophylaxis in dogs: Preliminary testing. PhD Thesis. Ghent University, Belgium; 2023.
- 109. Zhang H, Zhang L, Lin A, Xu C, Li Z, Liu K, et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature. 2023;621:396–403.
- 110.Lavelle EC, Ward RW. Mucosal vaccines—Fortifying the frontiers. Nat Rev Immunol. 2022;22:236–50.
- 111. Huang M, Zhang M, Zhu H, Du X, Wang J. Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B. 2022;12:3456–74.

- 112.Corthesy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013;4:185.
- 113. Nasiri O, Hajihassani M, Goodarzi NN, Fereshteh S, Bolourchi N, Firoozeh F, et al. Reverse vaccinology approach to identify novel and immunogenic targets against Porphyromonas gingivalis: An in silico study. PLoS ONE. 2022;17:e0273770.
- 114.Park HJ, Bang YJ, Kwon SP, Kwak W, Park SI, Roh G, et al. Analyzing immune responses to varied mRNA and protein vaccine sequences. NPJ Vaccines. 2023;8:84.
- 115. Verschoren J. Self-amplifying RNA vaccine design against canine periodontitis: Evaluation of vaccine antigen expression by cell cultures. PhD Thesis. Ghent University, Belgium; 2024.
- 116. Huang T, Peng L, Han Y, Wang D, He X, Wang J, et al. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol. 2022;13:922301.
- 117.Liu Y, Huang Y, He G, Guo C, Dong J, Wu L, et al. Development of mRNA lipid nanoparticles: Targeting and therapeutic aspects. Int J Mol Sci. 2024;25:10166.