International Journal of Dental Research and Allied Sciences

2025, Volume 5, Issue 2, Page No: 43-55 Copyright CC BY-NC-SA 4.0

Available online at: www.tsdp.net

Original Article

Analysis of Guided versus Hand-Performed Orthognathic Surgery: Developments, Precision, and Clinical Impacts

Janovskiene Audra 1*, Greta Sakaliene²

- ¹ Department of the Orthodontics, Institute of Stomatology, Rīga Stradiņš University, Dzirciema Street 20, LV-1007 Riga, Latvia.
- ² Baltic Biomaterials Centre of Excellence, Institute of Stomatology, Rīga Stradiņš University, Dzirciema Street 20, LV-1007 Riga, Latvia.

*E-mail ⊠ Audrajanovskiene@gmail.com

Received: 01 June 2025; Revised: 27 September 2025; Accepted: 28 September 2025

ABSTRACT

The evolution of orthognathic surgery through digital innovations has greatly enhanced precision and predictability. Traditional free-hand techniques depend heavily on the surgeon's skill, often producing inconsistent outcomes. Fully guided systems merge computer-assisted technologies—such as virtual surgical planning (VSP), CAD/CAM fabrication, and dynamic navigation—to improve accuracy and workflow efficiency. This review contrasts these methods and evaluates their effects on surgical accuracy, time efficiency, and clinical results. A scoping review was performed using PubMed, MEDLINE, Scopus, Cochrane Library, and Embase databases, focusing on clinical trials and cohort studies. Key aspects analyzed were accuracy, procedural efficiency, complication incidence, and functional/aesthetic performance. Fully guided methods demonstrated sub-millimetric precision, with mean linear deviations from 1.3 mm to 2.4 mm and angular deviations between 2.29° and 3.51°. These techniques also shortened operating time—averaging 34 minutes to 1.7 hours—and reduced postoperative risks. Digital integration improved workflow, consistency, and aesthetic predictability. Although free-hand surgery remains economical, it requires extensive expertise and tends to yield greater variability and prolonged recovery. Computer-guided orthognathic surgery surpasses manual methods in precision, predictability, and efficiency. Free-hand techniques remain practical for straightforward cases, yet fully guided systems deliver optimized outcomes. Future investigations should examine hybrid models that merge digital precision with manual flexibility to further enhance surgical performance.

Keywords: Fully guided, Free-hand, Mandibular reconstruction, Computer-assisted surgery, Virtual surgical planning (VSP), CAD/CAM, Dynamic navigation

How to Cite This Article: Audra J, Sakaliene G. Analysis of Guided versus Hand-Performed Orthognathic Surgery: Developments, Precision, and Clinical Impacts. Int J Dent Res Allied Sci. 2025;5(2):43-55. https://doi.org/10.51847/8k9GHTzGhj

Introduction

Orthognathic surgery has been fundamentally reshaped by digital technologies, which have significantly advanced surgical precision, consistency, and clinical outcomes. Traditionally, surgeons have relied on freehand methods using occlusal wafers and manual adjustments to reposition skeletal structures. These approaches, however, are limited by inter- and intraoperator variability, often causing postoperative discrepancies and extended recovery periods [1, 2]. The introduction of computer-assisted techniques has further revolutionized the field through tools such as artificial intelligence (AI), 3D imaging, real-time navigation, augmented reality, and dynamic tracking—all aimed at optimizing surgical accuracy. Virtual surgical planning (VSP) and CAD/CAM technologies enable customized guides and pre-shaped fixation

Audra and Sakaliene, Analysis of Guided versus Hand-Performed Orthognathic Surgery: Developments, Precision, and Clinical Impacts

plates, ensuring smoother execution and improved functional and aesthetic outcomes [3-5].

Studies have shown that intraoperative navigation enhances accuracy, particularly in vertical alignment—a consistent weakness of traditional surgery. Navigation systems maintain precision within 2 mm, providing superior control in the cranio-caudal axis compared to standard wafer-based positioning [6]. Additionally, augmented reality-assisted free-hand surgery is emerging as a valuable innovation, employing electromagnetic tracking and external reference markers to refine visualization and accuracy [2].

Despite these digital advances, free-hand techniques still hold relevance for less complex procedures. They remain cost-effective but often lead to longer hospitalization and less predictable results. The hierarchy of stability in orthognathic surgery indicates that maxillary expansion and mandibular rotation carry greater instability, underscoring the importance of advanced digital planning [7].

This review therefore aims to systematically evaluate and compare fully guided versus traditional free-hand approaches in orthognathic surgery, outlining their benefits, drawbacks, and clinical implications. By compiling data on digital surgical planning, intraoperative navigation, and customized guide creation, this study highlights the transformative role of digital systems in enhancing precision and patient satisfaction.

Materials and Methods

A scoping review design was selected instead of a formal systematic review, owing to the diversity in study structures, planning protocols, operative methods, and evaluation criteria found across literature comparing fully guided and free-hand orthognathic surgeries. This design allowed for comprehensive mapping of available evidence without forcing heterogeneous data into a single meta-analysis.

The review aimed to identify key research gaps concerning the comparative reliability, reproducibility, surgical efficiency, and clinical outcomes of both methods. Furthermore, this approach provided insight into how digital technologies are being implemented in various clinical settings and addressed challenges in integrating such tools into daily surgical practice. The ultimate goal was to generate a foundation for future systematic reviews and translational research within craniofacial surgery.

A detailed scoping review protocol was developed following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses—

Scoping Reviews) guidelines, with documentation provided in Supplementary Table S1 [8].

Defining the core research inquiry

To frame the central aim of this review, the PICO strategy (Population, Intervention, Comparator, Outcome) was used, as outlined in **Table 1**. Based on that framework, the main guiding question was articulated as follows:

Table 1. PICO (Population, Intervention, Comparator, Outcome)

Component	Description
Study	Individuals aged ≥18 years undergoing
Group	jaw correction surgery
	Digitally assisted methods, including
Approach	virtual planning, CAD/CAM technology,
	and 3D visualization
Comparison	Traditional manual surgical techniques
	Precision of surgery, operational
Results	efficiency, functional and cosmetic
Results	improvements, and minimization of
	complications

"For adult patients (≥ 18 years) who undergo orthognathic operations, what published evidence supports the effectiveness of fully guided or digitally assisted surgical systems—those employing virtual surgical planning (VSP), CAD/CAM design, and three-dimensional imaging—in enhancing precision, shortening procedure time, improving functional and cosmetic results, and lowering postoperative risks when compared with traditional free-hand practices over the last twenty years?"

Retrieval of relevant literature

An extensive literature exploration was completed on 1 May 2025 in PubMed, MEDLINE, Scopus, Cochrane Library, and Embase. The search strategy used the following Boolean expressions:

(("orthognathic surgical procedures" [MeSH Terms] OR ("orthognathic" [All Fields] AND "surgery" [All Fields]) OR "jaw surgery" [All Fields])) AND (("free" [All Fields] AND "hand" [All Fields]) OR ("full" [All Fields] AND ("guide" OR "guided" OR "guiding" OR "guides"))).

For Scopus, the syntax was: (TITLE-ABS-KEY(orthognathic AND surgery) OR TITLE-ABS-KEY(jaw AND surgery)) AND (TITLE-ABS-KEY(free AND hand) OR TITLE-ABS-KEY(full AND guided)).

Reference lists of the retrieved publications were additionally scanned to capture overlooked but relevant works.

Screening and eligibility criteria

Audra and Sakaliene, Analysis of Guided versus Hand-Performed Orthognathic Surgery: Developments, Precision, and Clinical Impacts

Only English, peer-reviewed, full-text manuscripts were eligible. Studies had to satisfy all of the following:

- Participants: adults (≥ 18 years) who had orthognathic procedures;
- Design: randomized trial, cohort (prospective or retrospective), or clinical case report;
- Focus: direct evaluation of computer-aided / fully guided versus traditional manual techniques;
- Endpoints: accuracy of repositioning, operative timing, complication frequency, and both functional and aesthetic outcomes;
- Timeframe: publications from 2001 to 2025. Records were excluded if they were duplicates,

Records were excluded if they were duplicates, reviews, meta-analyses, protocols, animal or in-vitro research, abstracts, preprints, or incomplete trials.

Automated tools first filtered unsuitable material; then two reviewers (I.K. and S.T.) independently screened titles and abstracts under blinded conditions. Full texts passing this stage were re-examined for compliance. Any disagreements were adjudicated by a third evaluator (T.P.).

Data extraction and organization

Key data were charted independently by the two main reviewers (I.K. and S.T.) using a standardized template. The information collected included:

- **Bibliographic details:** author, year of issue, study type, number of participants, and mean age;
- Surgical characteristics: kind of jaw correction (mandibular, maxillary, or bimaxillary), mode of intervention (digitally guided using VSP / CAD/CAM / 3D imaging versus conventional free-hand), and planning or execution protocol;

- Outcome variables: numerical accuracy (linear and angular deviation, occlusal match, condylar position), operative indicators (duration, ischemia time, preplanning time), complication incidence, and cosmetic / functional scores including patient satisfaction;
- Authors' conclusions: summarized judgments about the comparative merits of guided and manual surgery.

Data synthesis and presentation

All extracted elements were compiled into summary tables for descriptive evaluation. Because this was a scoping rather than a quantitative review, no meta-analysis was attempted. Instead, the data were qualitatively interpreted to compare fully guided and traditional orthognathic operations.

The synthesis highlighted contrasts in surgical accuracy, procedural efficiency, complication frequency, and patient-centered outcomes, outlining the present level of knowledge and pointing to areas needing deeper empirical investigation.

Results

The PRISMA diagram (**Figure 1**) displays the progression from identification to inclusion. A total of 427 citations were found (PubMed and MEDLINE = 208; Scopus = 183; Cochrane and Embase = 36). After automated removal of 319 irrelevant records, 108 entries were screened in detail. Twenty-four duplicates were deleted manually, and 73 studies were excluded for design or topic ineligibility. The remaining 11 papers satisfied all criteria and were retained. Reference screening yielded an extra 14 publications, giving a final sample of 25 studies for inclusion in this review.

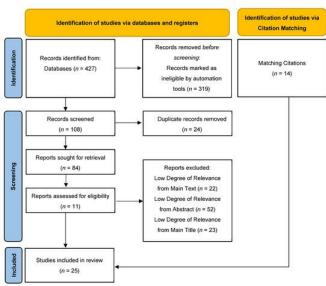


Figure 1. PRISMA flow diagram

Included studies spanned the years 2013 to 2022 **(Table 2).** In numerous publications, fully guided orthognathic procedures consistently demonstrated greater precision, with intraoperative navigation achieving linear deviations between 1.34 mm and 2.4 mm and angular discrepancies from 2.29° to 3.51°, particularly enhancing vertical alignment. The

incorporation of digital planning tools such as virtual surgical planning (VSP) and computer-aided design/manufacturing (CAD/CAM) enabled exact skeletal repositioning, minimizing intraoperative corrections and producing superior postoperative facial symmetry.

Table 2. Summary of outcomes from the included research

Autho rs, Public ation	Resear ch Design ; Cohort	Pati ent Age Ran	Surgical Procedu re	Method Employed	Plannin g and Executio n Strategi	Accurac y Measur es	Operat ive Perfor mance	Adver se Event Rates	Practic al and Visual Outco	Core Insight
Hanaso no et al., 2013 [9]	Compa rative Analys is; 38	51.0 ± 17.4 years	Jaw Reconstr uction	Technolog y-Driven (CAD/RP M) vs. Traditional	es Digital modelin g with bespoke guides and preforme d hardware vs. surgeon's realtime decisions	Minimiz ed total positiona l errors; improve d balance	Signific ant time savings in surgery, particul arly for single flap cases	Not docum ented	Enhanc ed structur al alignm ent and facial harmon y	Technol ogy-driven method s boost precisio n and streamli ne operatio ns.
Ma et al., 2021 [10]	Histori cal Review ; 118	55.8 ± 18 years	Jaw and Facial Surgery	Tech- Assisted Surgery vs. Traditional	3D digital design with tailored template s vs. conventi onal manual planning	Similar post- surgical positioni ng; detailed metrics not provided	Shorten ed surgery duratio n, ischemi a, bleedin g, and hospital /ICU stays	Reduc ed early advers e events in tech- assiste d group	Compa rable bite functio n and perfor mance; slight patient- reporte d differen ces	Tech-assisted surgery optimiz es resourc e use with similar long-term results.
Liu et al., 2014 [11]	Histori cal Review ; 15	39.8 years	Jaw Reconstr uction	Technolog y-Driven (bespoke templates) vs. Traditional	3D preopera tive modelin g with guides vs. surgeon's intraoper ative assessme nt	Average positiona 1 shift ~2.40 mm; angular shift ~3.51°	Surgery duratio n cut by ~2 hours	Fewer early advers e events in tech group (1/15 vs. 2/7)	Slight functio nal gains; both method s restore d satisfac tory functio n and appeara nce	Tech-driven method s enhance accurac y and reduce surgery time.

					inicai inipac					
Ciocca <i>et al.</i> , 2015 [12]	Forwar d- Lookin g Study; 10	Not speci fied	Facial Surgery	Technolog y-Driven (CAD/CA M) vs. Traditional (pre- plating)	Custom digital guides vs. real- time manual adjustme nts	Better side and arch alignme nt; vertical differenc es not significa nt	Surgica 1 duratio n not specifie d	Not docum ented	Satisfac tory restorat ion; slightly improv ed consist ency with tech method	Tech-driven approaches enhance consiste ncy, though skilled surgeons achieve similar traditional results.
Weitz et al., 2016 [13]	Histori cal Review ; 50	56 years (SD 13) vs. 55 years (SD 16)	Jaw Reconstr uction	Technolog y-Driven with VSP and stereolitho graphic models vs. Traditional	Compreh ensive digital planning with custom guides vs. intraoper ative manual techniqu es	Reduced post- surgical jaw angle discrepa ncies	~34-minute surgery time reductio n; enhance d bone healing	Compa rable early advers e event rates	Improved bite alignment, facial balance, and long-term bone union	Digital plannin g improv es predicta bility and efficien cy in comple x cases.
Zhang et al., 2016 [14]	Histori cal Review ; 22	35.5 years	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M) vs. Traditional	Digital planning with bespoke guides vs. manual intraoper ative adjustme nts	Position al shift ~1.34 mm; angular shift ~2.29°	Reduce d ischemi a time (~52.5 min vs. 94.2 min)	Not docum ented	Superio r bite alignm ent and bone contact; better symmet ry	Tech-driven method s reduce errors and surgery time compar ed to traditio nal approaches.
De Maessc halck et al., 2017 [15]	Histori cal Review ; 18	65.8 years vs. 55.9 years	Jaw Reconstr uction	Tech- Assisted Surgery vs. Traditional	3D digital planning with custom tools vs. conventi onal manual methods	Position al shifts 1.3–2.4 mm; angular shifts 2.29°– 3.51°	Compar able overall perform ance; influenc ed by surgeon expertis e	Simila r advers e event rates	Accept able structur al outcom es; minor tech method advanta ges	Tech-assisted surgery improves uniform ity, especial ly for less experienced surgeon s, though traditional method s remain effective with skill.

					imear impac					
Sieira Gil <i>et</i> <i>al.</i> , 2015 [16]	Forwar d- Lookin g Study; 20	47 years (SD 14) vs. 64 years (SD 13)	Jaw Reconstr uction	Technolog y-Driven with CAD and RPM vs. Traditional	Digital planning with custom guides and preshaped plates vs. manual plate contouring	Improve d jaw contour replicati on	Surgery time reduced by 42 min to 1.7 h	Fewer early advers e events	Enhanc ed bite alignm ent and facial appeara nce due to precise bone contact	Tech-driven method s optimiz e surgery despite higher initial costs.
Zweife 1 et al., 2015 [17]	Forwar d- Lookin g Study; 9	65.9 years vs. 57.5 years	Head and Neck Flap Reconstr uction (Jaw Focus)	Technolog y-Driven (VSP and 3D planning) vs. Traditional	Digital design with tailored template s for precise flap shaping vs. conventi onal adjustme nts	Not directly evaluate d	Surgery time cut by 60– 102 min; cost savings ~\$47.50 /min	Not docum ented	Indirect ly support s improv ed functio n through precisio n	Tech-driven method s enhance efficien cy and cost-effectiv eness.
Tarsita no <i>et</i> <i>al.</i> , 2016 [18]	Forwar d- Lookin g Study; 4	Not speci fied	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M) vs. Traditional	Digital planning with custom guides and pre- shaped plates vs. manual plate shaping	Enhance d jaw contour replicati on; improve d side accuracy	Fibular preparat ion time reduced from 26 min to 10 min	Not docum ented	Better bite functio n and appeara nce	Tech-driven method s signific antly reduce surgery time and improv e precisio n.
Wang et al., 2016 [19]	Histori cal Review ; 56	52 years	Jaw Reconstr uction (Free Fibula Flap)	Technolog y-Driven vs. Traditional	Preopera tive digital modelin g with custom guides vs. surgeon- reliant methods	Higher structura 1 precision with lower deviatio ns	Reduce d ischemi a time (~70 min) and overall surgery time	Fewer alignm ent-related advers e events	Better bone healing and bite outcom es	Tech-driven method s improv e plan executi on and efficien cy.
Culié et al., 2016 [20]	Histori cal Review ; 29	64.8 ± 8.9 years vs. 60.6 ± 10.9 years	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M) vs. Traditional	Digital guide design for precise bone segment ation vs. manual intraoper ative adjustme nts	Improve d side and vertical fibular alignme nt	Faster bone cuts, reducin g total surgery time	Not docum ented	Enhanc ed jaw arch restorat ion and symmet ry	Tech- driven method s offer reliable shape restorati on.

					imear impac					
Bouche t et al., 2018 [21]	Single- Center Histori cal Review ; 25	59.2 years vs. 60.2 years	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M) vs. Traditional	Custom guides and preshaped plates via digital design vs. manual techniqu es	Improve d objective measure s (e.g., reduced chin deviatio n)	Surgery time not specifie d	Not docum ented	Tech method s improv ed objecti ve measur es (e.g., motion range); traditio nal cases someti mes had higher subjecti ve satisfac tion	Tech-driven method s enhance objectiv e functio nal outcom es, though subjecti ve appeara nce varies.
Bartier <i>et al.</i> , 2021 [22]	Histori cal Review ; 33	55.9 ± 12.7 years	Jaw Reconstr uction (Free Fibula Flap)	Technolog y-Driven (CAD/CA M with VSP) vs. Traditional	Compreh ensive digital planning with multiple checkpoi nts and custom guides vs. manual adjustme nts	Enhance d sagittal/c oronal balance and condyle positioni ng	No notable surgery time differen ce	Not docum ented	Superio r appeara nce and functio nal consist ency	Tech-driven method s improv e midskel etal balance and outcom es.
Kwon et al., 2014 [23]	Histori cal Review ; 42	21.9 ± 3.0 years vs. 23.1 ± 5.2 years	Maxillar y (Le Fort I Osteoto my)	Technolog y-Driven (VMS/Digi tal) vs. Traditional (AMS)	dental data and cephalo metric analysis with rapid digital modelin g vs. impressi on-based methods	Position al error within 1 mm in 63.2% of VMS vs. 26% of AMS cases	Reduce d lab time; streamli ned digital workflo W	Not docum ented	Compa rable reliabili ty with enhanc ed precisio n	Digital VMS improv es workflo without sacrifici ng accurac y.
Schwar tz, 2014 [24]	Histori cal Review ; 30	28.3 years	Bimaxill ary Jaw Surgery	Technolog y-Driven (CASS) vs. Traditional	Compreh ensive digital planning with multiple sessions vs. manual planning with dental casts	Not applicabl e—focus on time/res ources	Clinicia n time reduced from 865 min to 805 min (~60 min saved)	Not docum ented	Increas ed efficien cy, potenti ally improvi ng surgical through put	CASS reduces plannin g time, optimiz ing clinical resourc es.

					inicai impac					
Van Hemel en <i>et</i> <i>al.</i> , 2015 [25]	Rando mized Forwar d- Lookin g Study; 66	19.7 8 years	Jaw Surgery	Technolog y-Driven (3D planning) vs. Traditional (2D planning)	3D digital modelin g for tissue outcome s vs. 2D cephalo metric analysis and model fabricati on	Significa nt improve ment in soft tissue predictio n; hard tissue errors (<2 mm) acceptab le	Plannin g predicta bility emphas ized; surgery time not detailed	Not docum ented	Enhanc ed facial balance and soft tissue outcom es	3D plannin g improv es soft tissue predicta bility in comple x cases.
Resnic k <i>et al.</i> , 2016 [26]	Histori cal Review ; 43	Not speci fied	Bimaxill ary Jaw Surgery	Technolog y-Driven (VSP with 3D-printed splints) vs. Traditional	Digital workflo w with 3D- printed splints vs. tradition al plaster model surgery	Not applicabl e—focus on economi c factors	Cost savings ~\$650– \$930 per case; ~25 workin g days saved annuall y (200 cases)	Not docum ented	Accept able outcom es; enhanc ed predict ability with digital plannin g	VSP improv es time and cost efficien cy.
Wrzose k <i>et al.</i> , 2016 [27]	Forwar d- Lookin g Study; 41	Not speci fied	Bimaxill ary Jaw Surgery	Technolog y-Driven (VSP with 3D-printed splints) vs. Traditional	Office- based digital planning reducing manual lab steps vs. tradition al model preparati on	Improve d consiste ncy (exact numbers not provided)	Plannin g time reduced by ~2.2 h; reduced resident workloa d	Not docum ented	Maintai ned or improv ed bite/ske letal accurac y	VSP reduces plannin g time and labor, benefiti ng through put.
Ritto et al., 2018 [28]	Histori cal Review ; 30	Not speci fied	Maxillar y Repositio ning	Technolog y-Driven (VSP) vs. Traditional (CMS)	Cone- beam CT and digital simulatio n vs. tradition al cast mountin g	Mean positiona 1 error ~1.20 mm (VSP) vs. 1.27 mm (CMS)	Improv ed workflo w in digital plannin g; surgery time not detailed	Not docum ented	Compa rable functio nal outcom es; workflo W	VSP achieve s similar accurac y with streamli ned plannin g.
Steinhu ber <i>et al.</i> , 2018 [29]	Prospe ctive Compa rative Study; 40	24.6 years	Jaw Surgery (Single/ Double- Jaw)	Technolog y-Driven (VSP) vs. Traditional	Digital planning by technicia ns minimizi ng manual steps vs. labor- intensive model preparati on	Not reported —focus on planning efficienc y	Plannin g time savings: 36 min (single- jaw), 74 min (double -jaw)	Not docum ented	Maintai ned outcom es; improv ed workflo w	VSP reduces plannin g time and resident workloa d.

Schnei der <i>et</i> <i>al.</i> , 2019 [30]	Rando mized Control led Study; 21	31.1 years	Jaw Surgery	Technolog y-Driven (VSP with CAD/CAM and 3D printing) vs. Traditional	Advance d digital workflo w with rapid modifica tions and pre- shaped plate simulatio n vs. tradition al cephalo metric tracing	Lower angular errors (SNA, SNB, ANB); improve d splint accuracy	~31% reductio n in splint-based interven tion time	Not docum ented	Enhanc ed functio n and facial balance	Tech-driven VSP improv es precisio n and intraope rative efficien cy.
Al- Sabahi et al., 2022 [31]	Prospe ctive Rando mized Study; 22	41 ± 18.5 years vs. 47.8 1 ± 13.6 years	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M, "COG" group) vs. Traditional ("MB" group)	Digital planning with custom guides and pre- shaped plates vs. manual reconstru ction	Improve d contour balance; lower angular deviatio ns	Shorter surgery and ischemi a times in tech group	Not docum ented	Higher patient satisfac tion (VAS, PSS); better appeara nce	Tech- driven method s enhance aestheti c balance and efficien cy.
Bao et al., 2017 [32]	Histori cal Review ; 35	Not speci fied	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M) vs. Traditional	3D modelin g with custom guides and preshaped plates vs. intraoper ative judgmen t	Improve d cut angle precision and segment positioni ng	Ischemi a time ~70 min (tech) vs. 120– 180 min (traditio nal); shorter surgery time	Not docum ented	Better bite relation ships and symmet ry; less tissue trauma	Tech-driven CAD/C AM enhance s accurac y and reduces ischemi a time.
Ritschl <i>et al.</i> , 2017 [33]	Histori cal Review ; 30	63.0 7 ± 8.08 years vs. 61.9 4 ± 11.6 4 years	Jaw Reconstr uction	Technolog y-Driven (CAD/CA M/virtual planning) vs. Traditional	3D modelin g with custom guides and preshaped plates vs. intraoper ative adjustments	Better jaw anatomy replicati on; reduced deviatio ns	~35 min shorter surgery time in tech group	No signifi cant differe nce	Compa rable function; improved predict ability in comple x cases	Tech-driven method s improv e contour replicati on and reduce surgery time.

Regarding operative efficiency, computer-assisted systems markedly shortened the surgery duration compared with conventional free-hand approaches, typically ranging from 34 minutes to 1.7 hours. The integration of customized guides and pre-shaped fixation plates improved the procedural flow, as several investigations reported measurable decreases in total operation time. Enhanced preoperative virtual simulations further allowed surgeons to perform faster

and more confidently, reducing the need for intraoperative revisions.

In terms of postoperative recovery, patients treated with digitally guided surgery experienced shorter hospital stays and lower complication rates. The increased precision of computer-based planning corresponded with higher patient satisfaction scores and improved aesthetic and functional results when compared with the manual free-hand method.

A comparative overview of both strategies is displayed in **Table 2**, summarizing differences in accuracy, efficiency, outcomes, and complication incidence reported by the reviewed studies.

Discussion

Orthognathic procedures require meticulous skeletal repositioning to restore both functionality and facial balance. Extensive research has analyzed the relative advantages of computer-guided workflows versus traditional free-hand methods. The guided approach combines 3D virtual modeling, VSP, CAD/CAM design, and rapid prototyping, enabling the fabrication of individualized surgical templates, prebent plates, and occlusal splints. This integrated workflow provides precise preoperative visualization, reproducible intraoperative performance, and predictable outcomes. postoperative contrast, manual In approaches depend on 2D cephalometric evaluation, stone model surgery, and handcrafted splints, making them inherently reliant on surgical experience and prone to variability between operators.

The evolution of fully guided systems has revolutionized pre-surgical preparation through three-dimensional imaging and virtual simulation, translating digital plans into accurate intraoperative execution [9, 13, 30]. Conversely, conventional methods continue to depend on 2D planning and manual steps that lack the spatial accuracy of modern digital tools [23, 24]. Although skilled surgeons can still achieve acceptable results with free-hand techniques, their outcomes often suffer from limitations in precision and increased error margins when dealing with complex anatomical configurations [12, 25].

Research consistently demonstrates the superiority of guided approaches in terms of accuracy and reproducibility. For instance, Zhang et al. reported mean linear deviations around 1.34 mm and angular errors near 2.29° in digitally executed osteotomies considerably less variable than those observed with manual techniques [14]. Similarly, multiple analyses [11, 15, 20] have confirmed that guided protocols enhance replication of planned bone movements, mandibular alignment, and fibular positioning. Although De Maesschalck et al. noted that highly skilled free-hand surgeons can approach similar precision levels, computer-assisted planning ensures standardized results and reduces inter-operator discrepancies [15].

One of the most recognized advantages of digital workflows is the reduction in operative time and ischemia. Multiple reports [9, 10, 17, 18] confirm that patient-specific cutting guides and prebent fixation

plates minimize intraoperative adjustments—such as manual plate shaping and repeated repositioning—leading to shorter overall surgical durations and reduced ischemic exposure. Moreover, studies focusing on the planning phase [24, 27, 29] emphasize that digital preoperative design significantly decreases laboratory workload and planning time, while simplifying resident training.

The enhanced aesthetic and functional performance achieved through digital guidance reflects the precision computer-based simulations. Numerous investigations confirm that guided procedures yield better mandibular symmetry, optimized occlusion, and accurate condylar placement, improving both mastication and facial appearance [13, 21, 31, 32]. Objective metrics, such as soft tissue prediction and landmark fidelity, often favor the guided system [22, 25], though experienced surgeons performing manual free-hand operations can still achieve satisfactory outcomes in select cases [21]. The accuracy afforded by digital systems is particularly crucial for complex reconstructions, where even minor deviations may result in long-term functional deficits or aesthetic asymmetry.

While fully guided surgical systems involve a greater initial financial commitment—owing to the need for specialized hardware, proprietary software, and custom-fabricated components [16, 26, 30]—a number of investigations suggest that these expenses are later compensated by overall economic efficiency. This is particularly evident in high-throughput surgical centers, where reductions in operation time, ischemia duration, and secondary corrective procedures contribute to a more cost-effective workflow [17, 26]. Economic modeling further indicates that digital preoperative planning may deliver significant yearly savings and enhance institutional productivity, especially when indirect expenditures such as operating room utilization and surgeon labor are factored into the analysis.

Another important aspect involves the impact on surgical education and procedural adaptability. The digitally guided model can help accelerate skill acquisition among novice surgeons by supplying a structured, replicable virtual roadmap [11, 27]. Nevertheless, some authors caution that excessive dependence on computerized planning could diminish manual dexterity and spatial judgment, skills that remain vital in unforeseen intraoperative conditions [12, 18]. Conversely, the traditional free-hand technique provides greater flexibility for real-time modification during surgery, though this adaptability

often increases procedure time and introduces greater performance variability [9, 19].

In the context of maxillary repositioning bimaxillary reconstruction, both digital and conventional strategies can achieve clinically acceptable precision. For example, Kwon et al. [23] and Ritto et al. [28] found that digitally assisted maxillary adjustments maintain error margins within 1-2 mm, with some reports noting improvements in occlusal alignment and skeletal correspondence. Likewise, Schwartz [24] and Van Hemelen [25] demonstrated that three-dimensional guided systems enhance soft-tissue predictability and facial symmetry, which are critical determinants of aesthetic harmony in bimaxillary orthognathic interventions.

Looking forward, the incorporation of next-generation digital technologies—including direct intraoral scanning and in-house desktop 3D printing—is expected to streamline guided workflows even further, lowering both production costs and planning duration [26, 30]. However, prospective multicenter trials remain necessary to verify these early benefits and assess their long-term effects on functionality, patient-reported satisfaction, and training standards.

Despite the encouraging evidence surrounding fully guided orthognathic procedures, certain limitations persist. Chief among these are the variations in study design, patient demographics, and evaluation criteria across existing literature, which complicate direct comparisons between digital and manual modalities. Furthermore, the implementation of comprehensive digital systems demands not only significant financial resources but also specialized surgeon training, factors that may restrict accessibility in resource-limited environments. These challenges underline the importance of developing standardized frameworks, cost-efficient workflows, and integrated educational programs that balance technological competency with traditional surgical expertise. Future research should thus emphasize large-scale, harmonized investigations that assess scalable deployment models, ensuring that digital innovation translates effectively into routine clinical practice.

Conclusions

Fully guided orthognathic surgery offers marked advantages in precision, consistency, and workflow optimization compared with conventional free-hand operations. Through digital planning and patient-specific instrumentation, surgeons can reproduce preoperative simulations with submillimetric accuracy, resulting in enhanced functional restoration and facial aesthetics, while also minimizing surgical duration.

Although initial setup costs and a potential decrease in intraoperative adaptability remain challenges, the reduction in procedural variability and long-term cost efficiency, particularly in high-volume institutions, highlight the transformative value of digital integration. Continued exploration of hybrid surgical models—merging the flexibility of manual techniques with the precision of computer guidance—should represent a key direction for future clinical research.

Acknowledgments: None

Conflict of Interest: None

Financial Support: None

Ethics Statement: None

References

- 1. Lee YJ, Kim SG. Custom surgical guide for orthognathic surgery. Oral Biol Res. 2025;49:1.
- 2. Kim SH, Lee SJ, Choi MH, Yang HJ, Kim JE, Huh KH, et al. Quantitative augmented reality-assisted free-hand orthognathic surgery using electromagnetic tracking and skin-attached dynamic reference. J Craniofac Surg. 2020;31:2175–81.
- Kwon TG. Application of 3D technology for orthognathic surgery. In: Handbook of oral and maxillofacial surgery and implantology. Cham: Springer International Publishing; 2024. p. 1–15.
- Shetty SK, Kasrija R. Analog to digital diagnosis and planning in orthognathic surgery: a narrative review. Cureus. 2025;17:e80858.
- Ha SH, Youn SM, Kim CY, Jeong CG, Choi JY. Surgical accuracy of 3D virtual surgery and CAD/CAM-assisted orthognathic surgery for skeletal class III patients. J Craniofac Surg. 2023;34:96–102.
- 6. Kang DH. Intraoperative navigation in craniofacial surgery. Arch Craniofac Surg. 2024;25:209–16.
- 7. Junior OH, Guijarro-Martínez R, de Sousa Gil AP, da Silva Meirelles L, Scolari N, Muñoz-Pereira ME, et al. Hierarchy of surgical stability in orthognathic surgery: overview of systematic reviews. Int J Oral Maxillofac Surg. 2019;48:1415–33.
- 8. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMAScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

- 9. Hanasono MM, Skoracki RJ. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope. 2013;123:597–604.
- Ma H, Shujaat S, Bila M, Sun Y, Vranckx J, Politis C, et al. Computer-assisted versus traditional freehand technique for mandibular reconstruction with free vascularized fibular flap: a matched-pair study. J Plast Reconstr Aesthetic Surg. 2021;74:3031–9.
- 11. Liu Y, Xu L, Zhu H, Liu SS-Y. Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online. 2014;13:63.
- Ciocca L, Marchetti C, Mazzoni S, Baldissara P, Gatto MR, Cipriani R, et al. Accuracy of fibular sectioning and insertion into a rapid-prototyped bone plate, for mandibular reconstruction using CAD-CAM technology. J Cranio-Maxillofac Surg. 2015;43:28–33.
- Weitz J, Bauer FJM, Hapfelmeier A, Rohleder NH, Wolff KD, Kesting MR. Accuracy of mandibular reconstruction by three-dimensional guided vascularised fibular free flap after segmental mandibulectomy. Br J Oral Maxillofac Surg. 2016;54:506–10.
- 14. Zhang L, Liu Z, Li B, Yu H, Shen SG, Wang X. Evaluation of computer-assisted mandibular reconstruction with vascularized fibular flap compared to conventional surgery. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:139–48.
- 15. De Maesschalck T, Courvoisier DS, Scolozzi P. Computer-assisted versus traditional freehand technique in fibular free flap mandibular reconstruction: a morphological comparative study. Eur Arch Otorhinolaryngol. 2017;274:517–26
- 16. Gil RS, Roig AM, Obispo CA, Morla A, Pagès CM, Perez JL. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modelling, and precontoured titanium reconstruction plates: a prospective study. Br J Oral Maxillofac Surg. 2015;53:49–53.
- 17. Zweifel DF, Simon C, Hoarau R, Pasche P, Broome M. Are virtual planning and guided surgery for head and neck reconstruction economically viable? J Oral Maxillofac Surg. 2015;73:170–5.
- 18. Tarsitano A, Battaglia S, Ciocca L, Scotti R, Cipriani R, Marchetti C. Surgical reconstruction of maxillary defects using a computer-assisted

- design/computer-assisted manufacturing-produced titanium mesh supporting a free flap. J Cranio-Maxillofac Surg. 2016;44:1320–6.
- 19. Wang YY, Zhang HQ, Fan S, Zhang DM, Huang ZQ, Chen WL, et al. Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery. Int J Oral Maxillofac Surg. 2016;45:1400–5.
- Culié D, Dassonville O, Poissonnet G, Riss JC, Fernandez J, Bozec A. Virtual planning and guided surgery in fibular free-flap mandibular reconstruction: a 29-case series. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133:175– 8.
- 21. Bouchet B, Raoul G, Julieron B, Wojcik T. Functional and morphologic outcomes of CAD/CAM-assisted versus conventional microvascular fibular free flap reconstruction of the mandible: a retrospective study of 25 cases. J Stomatol Oral Maxillofac Surg. 2018;119:455–60.
- Bartier S, Mazzaschi O, Benichou L, Sauvaget E. Computer-assisted versus traditional technique in fibular free-flap mandibular reconstruction: a CT symmetry study. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;138:23–7.
- 23. Kwon T, Lee C, Park J, Choi S, Rijal G, Shin H. Osteonecrosis associated with dental implants in patients undergoing bisphosphonate treatment. Clin Oral Implant Res. 2014;25:632–40.
- 24. Schwartz HC. Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery? Int J Oral Maxillofac Surg. 2014;43:572–6.
- Van Hemelen G, Van Genechten M, Renier L, Desmedt M, Verbruggen E, Nadjmi N. Threedimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction. J Cranio-Maxillofac Surg. 2015;43:918–25.
- Resnick CM, Inverso G, Wrzosek M, Padwa BL, Kaban LB, Peacock ZS. Is there a difference in cost between standard and virtual surgical planning for orthognathic surgery? J Oral Maxillofac Surg. 2016;74:1827–33.
- 27. Wrzosek MK, Peacock ZS, Laviv A, Goldwaser BR, Ortiz R, Resnick CM, et al. Comparison of time required for traditional versus virtual orthognathic surgery treatment planning. Int J Oral Maxillofac Surg. 2016;45:1065–9.
- Ritto FG, Schmitt ARM, Pimentel T, Canellas JV, Medeiros PJ. Comparison of the accuracy of maxillary position between conventional model

Audra and Sakaliene, Analysis of Guided versus Hand-Performed Orthognathic Surgery: Developments, Precision, and Clinical Impacts

- surgery and virtual surgical planning. Int J Oral Maxillofac Surg. 2018;47:160–6.
- Steinhuber T, Brunold S, Gärtner C, Offermanns V, Ulmer H, Ploder O. Is virtual surgical planning in orthognathic surgery faster than conventional planning? a time and workflow analysis of an office-based workflow for single- and double-jaw surgery. J Oral Maxillofac Surg. 2018;76:397–407.
- 30. Schneider D, Kämmerer PW, Hennig M, Schön G, Thiem DGE, Bschorer R. Customized virtual surgical planning in bimaxillary orthognathic surgery: a prospective randomized trial. Clin Oral Investig. 2019;23:3115–22.
- 31. Al-Sabahi ME, Jamali OM, Shindy MI, Moussa BG, Amin AA-W, Zedan MH. Aesthetic reconstruction of onco-surgical mandibular defects using free fibular flap with and without CAD/CAM customized osteotomy guide: a randomized controlled clinical trial. BMC Cancer. 2022;22:1252.
- 32. Bao T, He J, Yu C, Zhao W, Lin Y, Wang H, Liu J, Zhu H. Utilization of a pre-bent plate-positioning surgical guide system in precise mandibular reconstruction with a free fibula flap. Oral Oncol. 2017;75:133–9.
- 33. Ritschl LM, Mücke T, Fichter A, Güll FD, Schmid C, Duc JM, Kesting MR, et al. Functional outcome of CAD/CAM-assisted versus conventional microvascular, fibular free flap reconstruction of the mandible: a retrospective study of 30 cases. J Reconstr Microsurg. 2017;33:281–91.